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CHAPTER 1

INTRODUCTION

1.1 Formal Methods in Software Verification

Many software systems are required to satisfy the highest standards as to their

reliability and dependability. The traditional approaches of software design, develop-

ment, and testing are limited with respect to ensuring reliability and dependability.

In applications where ultra-reliability is necessary, e.g., in communications, defense,

transportation, aerospace, e-commerce, and health care, even the most thorough test-

ing of software may not ensure a satisfactory level of reliability. In other applications,

particularly in concurrent and distributed systems, thorough testing is almost impos-

sible because of the nature of the concurrent environment. To tackle reliability and

dependability in the above cases, a more rigorous approach, called formal methods,

needs to be employed.

Formal methods is a field of computer science in which mathematical approaches

are used for software development and verification. These approaches support the

rigorous specification and verification of computer programs. Using formal methods in

a program’s specification means that the program’s requirements are expressed using

a formal language. To employ formal methods in a program’s verification means that

the program is represented by a system that has formal (mathematical) semantics.

Notations and languages with defined mathematical meaning provide a means for the

precise and unambiguous description of the program’s behavior and the program’s
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specification. This enables the use of rigorous mathematical techniques. Thus it is

possible to devise a formal proof that a program satisfies its specification.

There are several reasons for using formal methods in software verification. The

main reason is that a formal correctness proof of a program results in an extremely

high level of confidence in the program’s correctness. Moreover, devising a formal

correctness proof may have several side effects. First, we can gain deep insight in

the program and its behavior. This can result in discovering errors in the program

or in strengthening the program’s specification. In addition, that insight can lead

to improvements of the program and to discoveries of novel techniques or methods

reusable in other application contexts.

1.2 Problem Overview

Every computer program utilizes some elementary algorithms, which form the

basic building blocks of the program. As an example, mutual exclusion is employed

in nearly every distributed system, see, e.g., (Dijkstra 1965; Dijkstra 1974; Dolev 2000;

Lamport 1974; Lamport 1986a; Lamport 1986b; Lamport 1987; Lamport and Lynch

1990; Lynch 1996). The problem of mutual exclusion was generalized to `-exclusion in

(Fischer, Lynch, Burns, and Borodin 1979; Fischer, Lynch, Burns, and Borodin 1989).

According to (Fischer, Lynch, Burns, and Borodin 1979; Fischer, Lynch, Burns, and

Borodin 1989), for ` ≥ 1, an `-exclusion algorithm is to satisfy the (safety) property

that at most ` processes can simultaneously execute their critical sections; and the

(liveness) property that every process wishing to enter its critical section eventually

enters the critical section; moreover, if less than ` processes execute their critical

sections, additional processes may enter their critical sections. (The number of the

additional processes is constrained by the safety property.)

Consider a distributed system that is required to be ultra reliable. If a transient

fault occurs in the system, that fault can corrupt the local and/or the shared memory.
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Thus the system’s data may be arbitrarily modified, which can put the system into

an illegal (unstable) state. If the system is self-stabilizing (Dolev, Israeli, and Moran

1993; Dolev 2000), it eventually stabilizes to a legal state with no outside intervention

and, thereafter, it behaves as if no fault ever occurred. Thus, self-stabilizing systems

are inherently fault-tolerant and dependable.

A self-stabilizing `-exclusion (SLEX) algorithm is an extension of `-exclusion,

which is able to recover without outside intervention from transient faults and from

a limited number of persistent faults. For instance, a SLEX algorithm can be em-

ployed in every distributed system that tolerates crashes of a limited number of pro-

cesses and in which the shared data may be corrupted during a process crash.

The first solution to SLEX appears in (Abraham, Dolev, Herman, and Koll 2001).

That solution uses the shared memory model, where the shared memory consists of

single-writer multiple-reader regular registers (Lamport 1986d).

Some operational arguments supporting correctness of the above SLEX algorithm

are presented in (Abraham, Dolev, Herman, and Koll 2001). Many of those arguments

involve non-constructive reasoning. This means that many auxiliary quantities are not

formulated explicitly and the validity of the properties is established by contradiction,

i.e., by disproving their non-existence.

In this thesis, we present a constructive, assertional correctness proof of the com-

plicated SLEX algorithm introduced in (Abraham, Dolev, Herman, and Koll 2001).

Our proof is formulated in Linear–Time Temporal Logic (Manna and Pnueli 1992)

and utilizes a history (Herlihy and Wing 1990) to model access to regular registers.

That proof has led to some new insight in the algorithm. That has allowed us to

identify some possible improvements of the SLEX algorithm in (Abraham, Dolev,

Herman, and Koll 2001), as discussed below.

The possibility that processes may be crashed is considered in (Abraham, Dolev,

Herman, and Koll 2001), which contributes to the complexity of the SLEX problem
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studied in this thesis. Intuitively, a process is crashed if it can never take any tran-

sition. A process that forever executes a code which does not modify any shared

registers cannot be distinguished from a process that is crashed. Therefore, such

a process is also considered to be crashed.

The part of code where the shared resource may be accessed is called the critical

section. The SLEX algorithms in (Abraham, Dolev, Herman, and Koll 2001) and in

this thesis satisfy the (safety) property that if at most ` processes are crashed in the

critical section, from some point onwards at most ` processes can simultaneously be

in their critical sections.

The SLEX algorithm in (Abraham, Dolev, Herman, and Koll 2001) satisfies the

following (liveness) property: If less than ` processes are crashed in the critical section

or crashed in a state expressing that those processes are attempting to enter the criti-

cal section, then every non-crashed process eventually enters the critical section. The

insight we have gained during our analysis helped us to improve the SLEX in (Abra-

ham, Dolev, Herman, and Koll 2001) so that if less than ` processes are crashed in the

critical section, every non-crashed process eventually enters its critical section. Thus,

the improved algorithm satisfies a stronger liveness property and tolerates crashes

of processes outside the critical section that are not tolerated in (Abraham, Dolev,

Herman, and Koll 2001).

The correctness proof presented in this thesis is on our improvement of the SLEX

in (Abraham, Dolev, Herman, and Koll 2001). In our proof, we present a property

characterizing processes (and their minimum number) identified by some process as

attempting to enter their critical sections, see Lemma 7.2.21. To structure the liveness

proof, we present a novel proof rule for reasoning about programs in the presence of

disabled (crashed) processes. That proof rule, presented in Lemma 7.3.28, is similar to

the proof rules in (Manna and Pnueli 1991) for reasoning about eventuality properties,

in the sense that recursive applications of the proof rule are required.
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The remainder of this thesis is organized as follows. In Chapter 2 we discuss the

background of self-stabilizing `-exclusion and some related work. Chapter 3 intro-

duces some preliminary concepts used in the rest of the thesis. A description of our

improved SLEX algorithm is presented in Chapter 4. The program semantics is de-

scribed in Chapter 5, and the program specification is a subject of Chapter 6. That

chapter also discusses the differences between our improved SLEX algorithm and the

SLEX algorithm in (Abraham, Dolev, Herman, and Koll 2001). A formal correctness

proof of our improved SLEX algorithm is presented in Chapter 7. That proof con-

sists of a proof of the safety property, presented in Chapter 7.2, and a proof of the

liveness property, presented in Chapter 7.3. Finally, Chapter 8 contains conclusion

and discusses some future work.
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CHAPTER 2

PROBLEM BACKGROUND AND RELATED WORK

In this chapter, we discuss the background of self-stabilizing `-exclusion and some

work related to mutual exclusion. In Section 2.1 we describe the types of interprocess

communication employed in the shared memory model of process communication. In

Section 2.2, we discuss the problem of mutual exclusion. The problem of `-exclusion

is then discussed in Section 2.3, and the concept of self-stabilization is introduced

in Section 2.4. In Section 2.5, we focus on self-stabilizing mutual exclusion. Finally,

Section 2.6 contains a discussion of self-stabilizing `-exclusion.

2.1 Interprocess Communication

In 1986, Lamport introduced the notions of safe, regular, and atomic registers,

see (Lamport 1986c; Lamport 1986d). In his seminal work, Lamport analyzed the

means of communication in truly distributed systems. When a shared register is im-

plemented in hardware, assumptions about the relative speeds of the communicating

processes are made, and delays are introduced into the system to synchronize accesses

to the shared register. At higher levels of data sharing, particularly in distributed sys-

tems, the communicating processes may run at vastly different speeds. In that case,

the wait and delay approach can lead to substantial degradation of concurrency and

performance of the system. If no assumptions about the relative speeds of the com-

municating processes are made, a shared register implementation cannot rely upon
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any delays. Then, three classes of register implementation are possible according to

Lamport.

The weakest possibility is the safe register, for which it is assumed only that

a read operation that is not concurrent with any write operation on the safe register

returns the correct value, i.e., the value most recently written to the register. If a read

operation is concurrent with a write operation, that read operation returns any of the

admissible values for the register.

The next stronger possibility is the regular register. If a read operation is not

concurrent with any write operation, the value most recently written to the register

is returned as in the case of the safe register. If a read operation is concurrent with

one or more write operations, then the read operation returns either the value that

had been written to the register most recently before the read operation started, or

one of the values written to the register concurrently with that read operation. As

a consequence, if two consecutive read operations on a regular register are concurrent

with two consecutive write operations on that register, it is possible that the earlier

read operation returns the value written by the later write operation whereas the

later read operation returns the value written by the earlier write operation.

The last possibility is the atomic register. It is a safe register in which all read and

write operations behave as if no concurrent operations ever occur in the system. In

other words, it is possible to find some sequential ordering of operations such that the

results of the operations executed concurrently will be the same as the results of the

operations executed in that total order. Consequently, once a read operation on an

atomic register returns the value written by some write operation on that register, all

subsequent read operations return either the value written by that write operation,

or the value written by some later write operation.

There is another criterion according to which one can categorize shared registers.

A register can be read by a single process only or by multiple processes. Similarly,
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a register can be written by one or multiple processes. To express this access pattern,

Lamport categorized registers as single/multiple-reader and single/multiple-writer.

For example, a single-writer multiple-reader register is a register that can be written

by only one process, but multiple processes can read the contents of that register. The

SLEX algorithm in this thesis uses single-writer multiple-reader regular registers.

2.2 Mutual Exclusion

The problem of mutual exclusion is one of the fundamental problems in computer

science. Assume that there exist N sequential processes sharing a single resource.

A process accesses the resource only when it executes part of its code known as the

critical section. It is required that if a process executes its critical section, no other

process is simultaneously in the critical section. In addition, every process that is

attempting to enter its critical section must be able to do so within a finite amount

of time. Nothing is assumed about the relative speeds of the processes.

In general, code of every program implementing mutual exclusion can be restruc-

tured to consist of the following four components: the trying section, the critical

section, the exit section, and the remainder section. The trying section represents the

code ensuring that no process enters the critical section if there is a process already

executing the critical section. The exit section represents the code signaling that some

process has just left the critical section. Finally, the remainder section represents the

rest of the code that is unrelated to sharing the resource.

The first solution of the mutual exclusion problem for N processes was published

by Dijkstra in (Dijkstra 1965). That solution is a generalization of Dekker’s solution

of mutual exclusion between two processes (Dijkstra 1968). Several other mutual ex-

clusion algorithms were developed later, see, e.g., (Peterson 1981), (Lamport 1986b),

and (Lycklama and Hadzilacos 1991).
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2.3 `-Exclusion

Fischer et al. generalized the problem of mutual exclusion to the case where some

number ` ≥ 1 of processes (but not more) are permitted to be simultaneously in

their critical sections, see (Fischer, Lynch, Burns, and Borodin 1979). If there are

fewer than ` processes in their critical sections, it is possible for another process to

enter its critical section. This generalization of the mutual exclusion problem is called

`-exclusion.

There is a simple solution of the `-exclusion problem that employs a mutual exclu-

sion algorithm. This solution uses a queue of processes waiting to acquire one of the

` available instances of the shared resource. Once there is an instance of the resource

available, the process at the head of the queue is allowed to acquire that resource.

Access to the queue is synchronized by a mutual exclusion algorithm.

Although the above solution correctly implements the `-exclusion problem, it leads

to a degradation of performance in those cases when several resources are available

for immediate assignment to processes that are already waiting to enter their critical

sections. If the process waiting at the head of the queue is slow or delays its execution,

the next waiting process cannot leave the queue, enter its critical section, and acquire

another available instance of the resource. Thus the above solution lacks concurrency,

a limitation particularly in distributed systems.

In (Fischer, Lynch, Burns, and Borodin 1979), the authors present several solu-

tions of the `-exclusion problem. Those solutions satisfy different concurrency and

robustness properties, allowing to control the degradation of performance even when

a limited number of processes fail.
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2.4 Self-Stabilization

In 1973, Dijkstra introduced the concept of self-stabilization on the problem of

mutual exclusion (Dijkstra 1974). Every mutual exclusion program satisfies the prop-

erties that at most one process is in the critical section at any moment of the program’s

computation, and that every process interested in entering the critical section even-

tually enters the critical section. If the shared memory is distributed, every process

maintains a local copy of the shared data. If a participating process experiences some

transient fault, data in the shared memory may become corrupt and the system may

be put to an illegal (unstable) state. An illegal state is a state in which at least one

of the properties of mutual exclusion does not hold. Once the program is in an illegal

state, it usually remains in illegal states until the program is restarted from the initial

state.

In (Dijkstra 1974), it was demonstrated that there exists a mutual exclusion pro-

gram which does not need to be restarted after any occurrence of a transient fault.

Instead, the program is always able to reach a legal state without outside interven-

tion such that from that state onwards it remains in legal states and behaves as if

no transient fault ever occurred. Thus the program is self-correcting in spite of the

presence of transient faults. Later such self-correcting programs became known as

self-stabilizing programs.

A self-stabilizing program can also be depicted as a program that may start its

execution in an arbitrary initial state. (That initial state represents the state after the

last transient fault occurred.) After the self-stabilizing program takes a finite number

of steps, it reaches a legal state and thereafter it remains in legal states. The weak-

fairness requirement is imposed on the program to ensure that the program eventually

takes steps leading towards self-stabilization. Self-stabilizing programs are assumed

to be non-terminating because otherwise it is not possible to ensure that any steps

leading to self-stabilization are eventually taken. Recently, it has been shown that
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some message-passing programs can be both self-stabilizing and terminating (Arora

and Nesterenko 2004).

In (Dijkstra 1974), Dijkstra presented three different self-stabilizing solutions of

the mutual exclusion problem. Dijkstra’s work did not gain any attention until 1984,

when Lamport referred to self-stabilization in his invited address, see (Lamport 1984),

and called it Dijkstra’s probably most brilliant work.

2.5 Self-Stabilizing Mutual Exclusion

As mentioned in Section 2.4, the first self-stabilizing mutual exclusion algorithm

was presented in (Dijkstra 1974). Dijkstra’s solution used the ring-shaped topology

of process communication, the shared memory model, and a special node running

a different version of the algorithm than the remaining nodes. Although his solution

was of limited practical use, it showed the existence of self-stabilizing algorithms and

their usefulness in fault-tolerant systems.

A major contribution to solving the problem of self-stabilizing mutual exclusion

was made by Lamport. In (Lamport 1986b), he defined several properties and re-

quirements that one might impose on a mutual exclusion algorithm and presented

three self-stabilizing solutions of the mutual exclusion problem, each of them satisfy-

ing a stronger set of requirements. For example, his self-stabilizing mutual exclusion

algorithm that utilizes one shared bit of information per process satisfies the mutual

exclusion property that at most one process is in the critical section at any moment

of a computation, and the deadlock freedom property that if there exists a process

trying to enter the critical section, then eventually some process enters the critical

section. Lamport’s three-bit solution satisfies both the properties of the one-bit so-

lution, and in addition, it satisfies the strong-fairness property; that is, if a process

is trying to enter its critical section, it eventually enters the critical section. Finally,

if a program consists of N concurrent processes competing for a shared resource, the
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N -bit solution given in (Lamport 1986b) satisfies all the requirements imposed on the

three-bit solution and also the first-come, first-served property. That property states

that processes enter the critical section in the order in which they became interested

in entering the critical section.

2.6 Self-Stabilizing `-Exclusion

Dijkstra’s self-stabilizing solution of the mutual exclusion problem was generalized

by Flatebo et al. in (Flatebo, Datta, and Schoone 1994). In that paper, the authors

present a self-stabilizing `-exclusion algorithm that uses the token-ring communication

topology. In their implementation, all processes including those that are not interested

in entering the critical section have to participate in passing a token in the ring.

Consequently, the system is not able to self-stabilize in case of a permanent failure

(crash) of one of the processes, which is the main drawback of the solution. The

prescribed ring communication topology is also a limitation.

Another algorithm implementing SLEX is presented in (Hadid 2002). That al-

gorithm uses a tree-shaped network for the communication between processes. In

addition, the algorithm cannot cope with crashed processes.

The first truly satisfactory self-stabilizing `-exclusion algorithm was published by

Abraham et al., see (Abraham, Dolev, Herman, and Koll 2001). (A preliminary

version of the paper appears in (Abraham, Dolev, Herman, and Koll 1997)). Their

`-exclusion algorithm is self-stabilizing and tolerates crashes of (a limited number

of) processes. It also does not prescribe any specific communication topology. In

addition, the SLEX algorithm utilizes a set of single-writer multiple-reader regular

registers as shared memory.

Recently, a solution to SLEX that utilizes self-stabilizing timestamps has been pre-

sented in (Abraham 2003). That solution was proposed in (Afek, Dolev, Gafni, Mer-

ritt, and Shavit 1994), but in 1994 no implementation of self-stabilizing timestamps
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was known. The timestamps-based solution satisfies the same safety and liveness

properties as the improved SLEX algorithm presented in Chapter 4 of this thesis. On

the other hand, the SLEX solution in (Abraham 2003) utilizes a set of single-writer

multiple-reader atomic registers rather than the weaker single-writer multiple-reader

regular registers, which are utilized in (Abraham, Dolev, Herman, and Koll 2001) and

in the SLEX algorithm presented in this thesis. Also the self-stabilizing timestamps in

(Abraham 2003) require, on average, almost five times more shared register memory

than the algorithms in (Abraham, Dolev, Herman, and Koll 2001) and in this thesis.
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CHAPTER 3

PRELIMINARIES

In this section we introduce some notions and notations used in the rest of this

thesis. In Section 3.1 we describe the temporal logic used in our proof. The notion

of a history (Herlihy and Wing 1990) is introduced in Section 3.2. Section 3.3 then

describes the UNITY (Chandy and Misra 1988) representation of programs.

3.1 Linear–Time Temporal Logic

In our proof, properties of the SLEX program are formulated in Linear–Time

Temporal Logic (LTL), see, e.g., (Manna and Pnueli 1983; Manna and Pnueli 1992;

Manna and Pnueli 1995). The language of LTL consists of the following entities:

variables, constants, propositions, functions, and predicates. The set of variables

is partitioned into the set of program local variables, which may change during a

program’s execution, and a set of global variables, which are unchanged.

The following propositional logic operators are used in LTL: ¬, ∧, ∨,→, and≡, de-

noting respectively negation, conjunction, disjunction, implication, and equivalence.

In addition, LTL uses the first-order predicate logic universal (∀) and existential (∃)
quantifiers, which can be applied to global variables only. Formulas in LTL do not

contain any occurrences of free variables. We adopt the abbreviation that every free

variable in a formula is universally quantified.

Several modal operators are used in LTL. Those are e, 2, 3, U , and W , called
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respectively next, always, eventually, until, and weak-until operators. The first three

operators are unary; the until and weak-until operators are binary. Their semantics

is explained below.

A program in LTL is modeled by a set of infinite computation sequences. A com-

putation sequence σ is an infinite sequence of states s0, s1, . . . , si, . . .. Every state si

assigns values to each program variable. Expression σ(i) denotes the suffix si, si+1, . . .

of computation sequence σ.

We next describe the semantics of the modal operators. Let ϕ and ψ be temporal

formulas and σ = s0, s1, . . . be a computation sequence. (1) Formula eϕ is satisfied

by computation σ iff ϕ is satisfied by σ(1). Intuitively, eϕ holds in the first state of

a computation iff ϕ holds in the next state of that computation. (2) Formula 2ϕ is

satisfied by σ iff ϕ holds in every suffix σ(i), i = 0, 1, . . ., of computation sequence σ.

Thus 2ϕ intuitively means that formula ϕ always holds. (3) Formula 3ϕ is satisfied

by σ iff there exists some suffix σ(i) such that ϕ is satisfied by σ(i). Intuitively, 3ϕ

holds in σ iff ϕ eventually holds in σ. (4) Formula ϕ U ψ is satisfied by σ iff there

exists some suffix σ(k) such that ψ is satisfied by σ(k) and formula ϕ is satisfied by

every suffix σ(i), i = 0, 1, . . . , k− 1. Intuitively, ϕU ψ holds iff eventually ψ holds and

ϕ holds until ψ holds. (5) Formula ϕW ψ is satisfied by σ iff 2ϕ is satisfied by σ or

ϕ U ψ is satisfied by σ. Intuitively, ϕW ψ holds iff ϕ holds unless ψ holds, but, in

contrast to the U operator, ψ does not have to eventually hold. In the latter case, ϕ

always holds.

For brevity, we use a version of the freeze quantifier (•), introduced in the half-

order modal logic, see (Henzinger 1990). Let y be a global variable, F be a total

function on program states, and ϕ be a temporal formula. Formula y = F • ϕ is

satisfied by computation sequence σ iff ϕ′ is satisfied by σ, where ϕ′ is the formula

obtained from ϕ as follows: Every free occurrence of y in ϕ is replaced by the constant

which is the value of function F evaluated in the first state of computation sequence
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σ. Expression y = F •ϕ intuitively means that the value of variable y is permanently

frozen (bound) to the value F (s0) and then ϕ′ is evaluated. Note that 2y = F • ϕ

is not equivalent to y = F • 2ϕ, since in the first formula y is frozen to the current

value of F in every suffix σ(i), i = 0, 1, . . ., whereas in the latter formula y is frozen to

the value of F in σ(0). Also note that from the semantics of the freeze quantification

it follows that y = F • ¬ϕ is equivalent to ¬(y = F • ϕ). The freeze quantification

y = F • ϕ is an abbreviation of ∀y · y = F → ϕ and, equivalently, ∃y · y = F ∧ ϕ in

the first-order predicate logic.

3.2 Histories

The SLEX algorithm employs the shared memory model of communication. The

shared memory consists of a set of single-writer multiple-reader regular registers (Lam-

port 1986c; Lamport 1986d). A read operation on such a register X returns the value

most recently written to X if that read operation is not concurrent with any write

operation on X. If a read operation on register X is concurrent with some write op-

eration on X, that read operation may return any value being concurrently written

to X or the value most recently written to X before that read operation started.

In the semantics of the program, we utilize a history (Herlihy and Wing 1990) to

model access to the regular registers. Intuitively, a history is a sequence of events

recording the starts (invocations) and the conclusions (responses) of (read and write)

operations performed by the program on its registers. Every event in a history refers to

the register involved in the operation and to the process performing that operation.

Some events also refer to the value that is read or written in that operation. For

process Pi, register X, and value v, an event in a history is of the form

• 〈i, inv, rd, X〉 indicating an invocation of a read operation performed by process

Pi on register X;
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• 〈i, res, rd, X, v〉 indicating a response of a read operation performed by process

Pi on register X, where v is the value of that response;

• 〈i, inv, wrt, X, v〉 indicating an invocation of a write operation performed by

process Pi on register X, where v is the value being written; or

• 〈i, res, wrt, X〉 indicating a response of a write operation performed by process

Pi on register X.

A history is a finite sequence of events. As usual, for history h, |h| denotes the

length of sequence h, i.e., the number of events in the history; and ε denotes the empty

history, i.e., the sequence with zero elements. For natural number i, 1 ≤ i ≤ |h|, h[i]

denotes the ith event in history h; and if e is an event, h ∧ e denotes the history

obtained by appending e to h.

An invocation h[m] matches a response h[n] if the invocation and the response

denote the start and the conclusion of the same operation.

Definition 3.2.1. Let h be a history and m and n be indices in h. Predicate

Match(h,m, n) holds iff m < n and, for some process Pi, register X, value v, and for

every value w, the following holds:

(h[m] = 〈i, inv, wrt, X, v〉 ∧ h[n] = 〈i, res, wrt, X〉
∧ (m < k < n → (h[k] 6= 〈i, inv, wrt, X, w〉 ∧ h[k] 6= 〈i, res, wrt, X〉)))

∨ (h[m] = 〈i, inv, rd, X〉 ∧ h[n] = 〈i, res, rd, X, v〉
∧ (m < k < n → (h[k] 6= 〈i, inv, rd, X〉 ∧ h[k] 6= 〈i, res, rd, X,w〉))) .

A history is sequential (Herlihy and Wing 1990) if it is either empty or if it is

non-empty, starts with an invocation, every response in the history is immediately

preceded by a matching invocation, and every invocation, except the first one, is

immediately preceded by some response.
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Every event in history h refers to some process. We define process P’s sub-history

of h as the projection of h onto events in h that refer to process P. We say that

history h is well-formed if all processes’ sub-histories of h are sequential, and if every

read invocation on some register is preceded by some write response to that register

in h. The latter requirement, not present in (Herlihy and Wing 1990), ensures that

the value of every read operation is well-defined, see Chapter 5.

In a well-formed history, every response has its matching invocation, but some

invocations may not have a matching response. A response with its matching invo-

cation constitutes a complete operation; an invocation without a matching response

constitutes an incomplete operation.

Definition 3.2.2. Let h be a well-formed history, m, n be two indices in h, and h[m]

be some invocation.

a) Pair 〈m,n〉 is a complete operation in h if Match(h,m, n) holds.

b) Singleton 〈m〉 is an incomplete operation in h if ¬Match(h,m, k) holds, for

every index k in h.

By definition, every operation in a history is either complete or incomplete. Here-

after, predicate Complete(h, op) denotes that operation op is a complete operation

in h. If op is a complete operation in h, Start(h, op) denotes the index of op’s invo-

cation and Concl(h, op) denotes the index of op’s response in h. Thus, if 〈m, n〉 is

a complete operation in h, Start(h, op) = m and Concl(h, op) = n.

Sometimes we also refer to the type of an operation. Intuitively, the type of an

operation characterizes the process which performs that operation, the kind of that

operation, and the register involved in that operation. More precisely, let op = 〈m, n〉
or op = 〈m〉 be an operation in history h, Pi be a process, and X be a register. We

say op is a read operation on register X by process Pi, denoted by OpType(h, op) =

〈i , rd,X 〉, if h[m] = 〈i, inv, rd, X〉. If h[m] = 〈i, inv, wrt, X, v〉, for some value v, we say
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op is a write operation on register X and we denote this by OpType(h, op) = 〈wrt,X 〉.
The latter type does not explicitly specify the process which performs that operation.

That process is determined by register X because X is a single-writer register.

Every write operation involves some value written to the register, and every com-

plete read operation involves some value read from the register. The value involved in

a write operation is recorded in the invocation of that operation whereas the value in-

volved in a read operation is recorded in the response of that read operation. Thus the

value involved in a read operation can be determined only when that read operation

is complete.

Definition 3.2.3. Let h be a well-formed history, and let op = 〈m, n〉 or op = 〈m〉
be an operation in h. If h[m] = 〈i, inv, wrt, X, v〉, or if op is a complete read operation

and h[n] = 〈i, res, rd, X, v〉, then the value of operation op, denoted by Val(h, op), is

v. Otherwise, i.e., if op is an incomplete read operation, Val(h, op) is undefined.

In our correctness proof we use the notions of one operation preceding another

operation, one operation being concurrent with another operation, one operation

immediately preceding another operation, the last write operation to a register, and

the last read operation on a register performed by some process.

Definition 3.2.4. Let h be a well-formed history. Let op = 〈m, n〉 or op = 〈m〉
be some operation in h, and let op ′ = 〈m′, n′〉 or op ′ = 〈m′〉 be an operation in h

different from op.

a) Operation op precedes op ′ in h, denoted by op ≺ op ′, if op = 〈m, n〉 and n < m′

are satisfied.

b) Operation op is concurrent with op ′ in h, denoted by op ‖ op ′, if ¬(op ≺ op ′ ∨
op ′ ≺ op) is satisfied.

c) Operation op immediately precedes op ′ in h, denoted by op < op ′, if op ≺ op ′
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holds and if, for every operation op ′′, op ≺ op ′′ ≺ op ′, OpType(h, op ′′) 6=
OpType(h, op) holds.

d) Operation op is the last (possibly incomplete) write operation in h on register

X, denoted by op = LastWrt(h,X ), if OpType(h, op) = 〈wrt,X 〉, and every

operation op ′, op ′ 6= op, of type 〈wrt, X〉 precedes op.

e) Operation op is the last (complete) read operation in h on register X by process

Pi, denoted by LastRd(h, op, i ,X ), if op is complete, OpType(h, op) = 〈i , rd,X 〉,
and every operation op ′, op ′ 6= op, of type 〈i, rd, X〉 precedes op.

Intuitively, operation op precedes op ′ in history h if op had completed before op ′

started. (In this case, operation op ′ may be either a complete or an incomplete

operation.) Two operations are concurrent in h if neither of the operations precedes

the other operation in h. Operation op immediately precedes op ′ in h if op is the

most recent operation of type OpType(h, op) that precedes op ′ in the history. (Note

that in a well-formed history every process’s sub-history is sequential. Therefore,

in a well-formed history, for two consecutive operations of the same type, one of

the operations precedes the other operation.) The last (possibly incomplete) write

operation is unique and always defined in a well-formed history. Thus LastWrt(h,X )

is a total function. The last (complete) read operation on a register may not exist. If

in a well-formed history there exists a complete read operation on some register by

a process, then the last (complete) read operation on that register by that process is

defined and unique.

In our correctness proof, we also identify those write operations that may influence

the outcome of a read operation.

Definition 3.2.5. Let h be a well-formed history, r be a complete read operation in

h, and w be a write operation in h. We define

ValSrc(h, r ,w) ≡ ∃i∃X ·OpType(h, r) = 〈i , rd,X 〉 ∧OpType(h,w) = 〈wrt,X 〉
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∧Val(h, r) =Val(h,w) ∧ (w < r ∨ w ‖ r) .

If predicate ValSrc(h, r ,w) holds, we say that write operation w is a value source of

read operation r in history h.

Intuitively, write operation w is a value source of read operation r in history h if

operations r and w access the same register, have the same value, and w either

immediately precedes r or w is concurrent with r in h.

For readability, we adopt the following abbreviations: We do not mention history

parameter h in a predicate if h is the history component of the state in which that

predicate is being evaluated. Whenever we refer to the most recent value of a reg-

ister, we denote that value by the name of that register typeset using a bold face

font. Thus, for the most recently written value of register X, we write X instead of

Val(LastWrt(X)).

3.3 UNITY Programs

UNITY (Chandy and Misra 1988) is a guarded command language particularly

suitable for a uniform representation of sequential and concurrent programs. In

UNITY, every command (called the action) of a program is guarded by a quantifier-

free predicate, called the guard. An action is an atomically executed statement rep-

resented by a state transformation function.

Let G be a guard and τ be an action. In UNITY, transition G −→ τ expresses

that action τ is guarded by guard G. Every UNITY program is then represented by

some finite set of transitions

G1 −→ τ1 ,

G2 −→ τ2 ,

...
...

...

Gn −→ τn ,
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where Gi are guards and τi are actions, for i = 1, 2, . . . , n.

In any state of a UNITY program, only transitions that are enabled in that state

may be taken. A transition is enabled in a state if the guard of that transition is sat-

isfied in that state; otherwise, the transition is disabled in that state. If several tran-

sitions are enabled in a state, the choice of the taken transition is non-deterministic.
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CHAPTER 4

PROGRAM DESCRIPTION

The self-stabilizing `-exclusion program S is a system of N > 1 concurrent pro-

cesses P1, . . . ,PN . Every process executes a copy of the program in Figures 4.1 and

4.2, and utilizes a set of (local) variables and a set of (shared) single-writer multiple-

reader regular registers. For convenience, register names are typeset using a Sans Serif

font. In addition, names of registers that may be modified (written) by process Pi are

subscripted by index i. In the program, (local) variables are typeset using italics and

have not been subscripted. When needed for clarity, names of process Pi’s variables

will be subscripted by index i.

To ensure the safety property that at most ` ≤ N processes can be in their

critical sections simultaneously, the program employs a set of boolean registers TRYi.

Register TRYi is written value true when process Pi attempts to enter its critical

section, and false when Pi leaves its critical section. Every process Pi keeps track

(in variable Bi) of all processes about which Pi assumes to be in the critical section.

Process Pi enters its critical section only if |Bi| ≤ `, where |Bi| denotes the cardinality

of set Bi.

It is possible that process Pi reads register TRYj, for some process Pj different

from Pi, always at the moments when TRYj is true, even if the value recorded in

TRYj was set to false in the meantime. Consequently, from Pi’s point of view, process

Pj is continuously in its critical section. This may lead to starvation of process Pi.
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function getTry()

`8.1: for j := 1 to N do begin

`8.2: read(t[j] := TRYj);

`8.3: read(x[j] := Xj);

`8.4: a[j] := x[j] ∨ t[j];

`8.5: if a[j] then

`8.6: read(ord [j] := ORDj)

`8.7: end;

`8.8: p := π(choice(ord , γ(a)), i);

`8.9: A := {j | j 6= i ∧ t[j] ∧ (j ∈ p ∨ ∃i′ · (i′ ∈ p ∧ ¬dominates(v , j , i ′)))};
`8.10: return |A| < `

end

Figure 4.1: Code of function getTry().

To ensure liveness, some processes will be excluded from set Bi. Specifically, every

process will be excluded from Bi which is ‘much faster’ than process Pi. (The notion

of ‘much faster’ is made precise below.) Of course, if the above mentioned processes

are excluded from Bi, the safety property remains preserved.

In order to determine whether one process is ‘much faster’ than another one, pro-

gram S employs an array of vectors. Vector VECi is a register consisting of N elements.

Element VECi[i], called process Pi’s color, is some natural number in {1, . . . , 2N}. El-

ement VECi[j], for every process Pj, j 6= i, is a pair of colors referred to as first and

second . Every process Pi maintains (local) copies of all vectors VECj as rows vi[j] in

matrix vi.

The new value of register VECi is computed by function report(v , i), which returns

some vector r satisfying the following: Process Pi’s color in r is some color different

from every color in column i of matrix v. (Such a color exists since 2N colors are
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repeat forever

`1: repeat

`2: write(Xi := true);

`3: for j := 1 to N do begin

`4: read(v[j] := VECj)

`5: end;

`6: vec := report(v , i);

`7: read(old try := TRYi);

`8: try := getTry();

`9: write(TRYi := try);

`10: if try ∧ ¬old try then

`11: write(VECi := vec)

`12: until try;

`13: for j := 1 to N do begin

`14: read(v[j] := VECj);

`15: read(t[j] := TRYj)

`16: end;

`17: B := {j | t[j] ∧ ¬dominates(v , j , i)};
`18: if |B| > ` then goto `1;

`19: Critical Section;

`20: write(TRYi := false);

`21: write(Xi := false);

`22: row := change(ord , γ(a), i);

`23: write(ORDi := row );

`24: Remainder Section

end

Figure 4.2: Program executed by process Pi, for i = 1, . . . , N .
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available and at most 2N − 1 colors are used in column i.) For every process Pj,

j 6= i, process Pj’s color (recorded in v[j][j]) is shifted to the first color of the pair

r[j]. And the original first color (recorded in v[i][j].first) is shifted to the second color

of the pair r[j]. Thus, the following holds for vector r = report(v , i) and for every

process Pj, j 6= i: r[i] 6= v[i][i] ∧ r[i] 6= v[j][i].first ∧ r [i ] 6= v [j ][i ].second ∧ r [j ].first =

v [j ][j ] ∧ r [j ].second = v [i ][j ].first .

Every time process Pi attempts to enter its critical section, an updated vector is

written to register VECi. Therefore, for every process Pj, Pj’s color is shifted to the

first and second colors of VECi[j]. Consequently, if process Pi updates its register VECi

‘much faster’ than process Pj, the colors VECi[j].first , VECi[j].second , and VECj[j] will

be the same. Whether Pi is ‘much faster’ than Pj is determined by means of function

dominates(v , i , j ), which returns true iff i 6= j ∧ v[j][j] = v[i][j].first = v [i ][j ].second

holds. We then say that process Pi dominates process Pj.

It could be the case that more than ` processes Pi simultaneously update their

colors in VECi[i], hence making every Pi’s color different from every other color in

column i. Therefore, no process dominates any of the above mentioned processes Pi.

Consequently, set Bi, for every process Pi, will contain at least ` processes, which

may lead to starvation. To ensure liveness, at most ` processes are selected that may

simultaneously attempt to enter their critical sections and write true to their register

TRYi. This selection is based on process priorities, as described next.

Program S employs a set of registers ORDi to determine a process’s priority. Every

register ORDi is an array of N bits and forms the ith row of a (square) bit-matrix.

A (local) copy of the bit-matrix is maintained in variable ord i, for every process

Pi. A process has the kth highest priority if it is selected in the kth column of the

bit-matrix. The selection process is described next.

In the bit-matrix, each column k is viewed as a carousel. Every process Pi’s seat

in that carousel carries either 0 or 1. Some of those seats are marked inactive. Seats



27

marked inactive belong to the processes currently not wishing to enter nor being in

their critical sections. Number 0 in Pi’s seat indicates that process Pi has visited its

critical section an even number of times, whereas number 1 indicates an odd number

of visits. If all active seats carry the same value, the first active process in column k

is selected as the kth highest priority process. Otherwise, the minimal process among

all active processes carrying a value different from the value of the first active process

is selected. After process Pi leaves its critical section, the parity recorded in Pi’s seat

is updated. That updated parity equals the parity recorded in the previous active

process’s seat unless all seats belonging to active processes carry the same parity. In

that case, the first active process inverts its parity. Thus the number of consecutive

seats with the same parity increases as processes visit their critical sections until all

seats carry the same value.

If more than ` processes are attempting to enter the critical section, some processes

will set their register TRYi to false to avoid deadlock. Therefore, register TRYi no

longer suffices as an indicator that process Pi is wishing to enter its critical section.

For that purpose the program employs a set of boolean registers Xi.

Process Pi is active if Pi indicates its wish (by writing true to Xi) or attempt (by

writing true to TRYi) to enter its critical section. Process Pi is active in column k (of

bit-matrix ord i) if Pi is active and it has not been selected in any column preceding

column k.

We now formalize the selection process described above. Let a be a non-empty set

of active process indices. Function First(a) = min(a) denotes the first process in a,

and Last(a) = max(a) denotes the last process in a. Let ord be the local copy of the

bit-matrix of registers ORDi. Process Pi is selected in column k of bit-matrix ord if Pi

is the minimal active process in column k that has the same value as the last active

process in that column. Formally, Select(ord , a, k) = min{i | i ∈ a ∧ ord [i ][k ] =

ord [Last(a)][k ]}.



28

Function Select is utilized in function choice, which determines the process pri-

orities. Intuitively, the process selected in the first column of a bit-matrix has the

highest priority; the process selected in the second column has the second highest

priority; and so forth. For set a of active processes and a local copy ord of the bit-

matrix ORD, function choice(ord , a) returns the sequence of active processes sorted

in decreasing order with respect to their priorities. That sequence s has length |a|,
and for every k, 1 ≤ k ≤ |a|, element s[k] equals Select(ord , a \ ρ(s , k), k). Here,

function ρ(s, k) = {s[i] | i < k} determines the set of processes that were selected

earlier than in column k. Processes in ρ(s, k) are then removed from the set of active

processes in column k and all subsequent columns.

One of the arguments of function choice is a set of active processes. That set

is computed by function γ. Function γ takes as its argument an array a of boolean

values. Only if element a[i] equals true, process Pi is included in the set of active

processes. Formally, γ(a) = {i | a[i] = true}.
After process Pi leaves its critical section, register ORDi is updated with the new

parity of Pi’s visits in the critical section. The new value of ORDi[k] depends on the

parity of visits of the previous active process in column k. Recall that every column

is viewed as a carousel. Therefore, the first active process in column k is preceded

by the last active process in column k. Every process should visit the critical section

the same parity of times. After a process leaves its critical section, the sequence of

consecutive processes with the same parity is extended. Hence, after process Pi leaves

its critical section, the new value recorded in ORDi[k] equals the value recorded in

ORDj[k], for previous active process Pj, unless Pj is the first active process in column

k. In that case, a new round of visits starts and the new value recorded in ORDi[k]

is set to differ from the last active process’s value in column k. If there is no active

process in column k, the new value of ORDi[k] is unimportant and reset to 0. Due to

the parity copying, if some process other than Pi is selected in column k, that process
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remains selected in that column even after ORDi is updated. Consequently, priorities

of processes selected before Pi will not be lowered by Pi’s activity.

We now precisely describe how the new value of register ORDi is determined. Let a

be a set of active processes. If a is non-empty, then function Prev(a, i) = max{j | j ∈
a ∧ (j < i ∨ i ≤ First(a))} determines the process that immediately precedes process

Pi in a carousel. Let ord be a local copy of the bit-matrix ORD and k be a column

index in ord . Function Prior(ord , a, i , k) determines the new value of register ORDi

in column k. It is defined as follows: If a is empty, Prior(ord , a, i , k) equals 0;

if Prev(a, i) < i holds, Prior(ord , a, i , k) equals ord [Prev(a, i)][k ]; otherwise, i.e.,

if Prev(a, i) ≥ i , Prior(ord , a, i , k) equals 1 − ord [Prev(a, i)][k ]. Finally, function

change(ord , a, i) determines the new value of register ORDi. Intuitively, the set of

processes active in every column k is first determined and then function Prior is

used to determine the new value of ORDi[k]. Thus, change(ord , a, i) = o iff o[k] =

Prior(ord , a \ ρ(choice(ord , a), k), i , k), for every column k.

Once process priorities are computed, the set of active processes that have a higher

priority than process Pi is computed. Assume that s is a sequence of processes ordered

in decreasing order with respect to their priorities. Then function π(s, i) = {s[j] |
1 ≤ j ≤ |s| ∧ (1 ≤ k ≤ j → s[k] 6= i)} determines the set of processes that have

a higher priority than process Pi. Those processes are then recorded in variable Ai.

Only if |Ai| < ` holds, register TRYi is set to true and Pi attempts to enter its critical

section. Otherwise, Pi remains actively waiting until its priority increases.

In the states following a transient fault, it is possible that registers ORDi indicate

that ` non-crashed processes have a higher priority than some process crashed in the

critical section. (If no failure occurs, all active crashed processes have eventually

higher priority than every non-crashed process.) Thus those ` non-crashed processes

determine that |Ai| < ` holds and they set their registers TRYi to true. This again

may lead to starvation. To ensure liveness, additional processes are included in set
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function getTry()

`8.1: for j := 1 to N do begin

`8.2: read(t[j] := TRYj);

`8.3: read(x[j] := Xj);

`8.4: if x[j] then

`8.5: read(ord [j] := ORDj)

`8.6: end;

`8.7: p := π(choice(ord , γ(x )), i);

`8.8: A := {j | j 6= i ∧ (j ∈ p ∨ (t[j] ∧ ∃i′ · (i′ ∈ p ∧ ¬dominates(v , j , i ′))))};
`8.9: return |A| < `

end

Figure 4.3: Code of the original function getTry().

Ai. Intuitively, the processes which are possibly crashed in the critical section and

have a lower priority than process Pi are included in set Ai. More precisely, every

process identified by Pi as in the critical section and not dominating to any process

with a higher priority than Pi is included in Ai.

The SLEX program in the current paper is a slightly improved version of the SLEX

program in (Abraham, Dolev, Herman, and Koll 2001). Every register ORDj consists

of N bits, and not only of ` bits as in (Abraham, Dolev, Herman, and Koll 2001).

In addition, function getTry in Figure 4.1 differs from function getTry in (Abraham,

Dolev, Herman, and Koll 2001), see Figure 4.3. In (Abraham, Dolev, Herman, and

Koll 2001), process Pj is active if the value recorded in register Xj is true. We identify

process Pj as active if Xj = true or if the value recorded in register TRYj is true.

Because of this modification (together with the increased size of registers ORDj), our

improved SLEX program is able to assign a priority to every process crashed in the

critical section or crashed trying to enter the critical section, i.e., with TRYj = true
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or Xj = true.

To ensure liveness, the counting of higher priority processes (in set Ai) has also

been modified. Our modification of function getTry preserves the property of the

original function getTry in (Abraham, Dolev, Herman, and Koll 2001) that eventually

at most ` processes have their registers TRYi equal true, provided that less that `

processes are crashed in the critical section. To ensure that, we do not include all

processes with a higher priority than process Pi in set Ai. Instead, a higher priority

process is included in Ai only if it is identified as in the critical section. That is, only

the higher priority processes with TRYj = true are included in Ai. In other words,

processes crashed with Xj = true and TRYj = false are excluded from Ai.
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CHAPTER 5

PROGRAM MODEL AND SEMANTICS

In our proof, the program in Figures 4.1 and 4.2 is represented by a UNITY-like

program, see Section 3.3. Obtaining the UNITY representation of program S from

its description in Figures 4.1 and 4.2 is straightforward. That UNITY representation

can be found in Appendix A.

A state of program S is represented by a pair 〈σ, h〉, where σ is a function mapping

all variables into their domain of interpretation, and h is a well-formed history. In

function σ, in addition to the program’s variables, we introduce variable loci and

auxiliary variable crashedi, for every process Pi. Variable loci models Pi’s program

counter; variable crashedi takes boolean values and holds iff Pi is crashed. If process

Pi is crashed, the guards of all Pi’s transitions are permanently disabled.

The semantics of the program (Stoy 1977; Schmidt 1986) are defined as usual with

the exception of the critical and remainder sections, and the read and write operations

on regular registers. Although executing each of the critical and remainder sections

may consist of several steps, this is irrelevant for the correctness proof and therefore

not modeled. Therefore, for every process, each of the above sections is modeled by

one atomic transition. We assume that in those sections there are no references to any

registers. Consequently, a process that remains forever in its critical or its remainder

section is crashed.

We next define the semantics of commands read(y:=X) and write(X :=e), where X
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is some register, y is some variable, and e is some expression. Each of these commands

is modeled by two atomic transitions: invoke read(X) and respond read(y, X), resp.

invoke write(X, e) and respond write(X). Here, invoke read (or invoke write) denotes

the start of a read (or write) command, and respond read (or respond write) denotes

the conclusion of the corresponding command. Although execution of the actual

command may consist of several steps, again, this is irrelevant for the correctness

proof and therefore these steps are not modeled.

Execution of command invoke write(X, e) by process Pi in state 〈σ, h〉 appends

event 〈i, inv, wrt, X, [[e]](σ)〉, where [[e]](σ) denotes the value of expression e in σ, to

history h and updates the value of program counter loci. Formally,

[[invoke write(X, e)]](〈σ, h〉) = 〈σ{next(loci)/loci
}, h ∧ 〈i, inv, wrt, X, [[e]](σ)〉〉 .

In the above, expression next(loci) denotes the location after the action with en-

try point loci has been taken. (Because processes are sequential and determin-

istic, see Figures 4.1 and 4.2, expression next(loci) is well-defined.) Expression

σ{next(loci)/loci
} denotes the usual state variant: For variables y, z and expression

e, we define

σ{e/y}(z) =





[[e]](σ) if y ≡ z;

σ(z) otherwise.

Execution of respond write(X) by Pi in state 〈σ, h〉 appends event 〈i, res, wrt, X〉
to history h and updates the value of program counter loci. Formally,

[[respond write(X)]](〈σ, h〉) = 〈σ{next(loci)/loci
}, h ∧ 〈i, res, wrt, X〉〉 .

Execution of invoke read(X) by Pi in state 〈σ, h〉 appends event 〈i, inv, rd, X〉 to

history h and updates the value of program counter loci. Formally,

[[invoke read(X)]](〈σ, h〉) = 〈σ{next(loci)/loci
}, h ∧ 〈i, inv, rd, X〉〉 .
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Finally, we define the semantics of respond read. If the read operation on register

X by process Pi is not concurrent with any write operation on X, then the value

of that read operation equals the value of the last write operation to X. (In a well-

formed history such a write operation always exists.) Otherwise, the value of that

read operation equals the value of any of the concurrent write operations on X or

the value of the write operation to register X which immediately precedes that read

operation. Thus, if y is a local variable, the semantics of respond read(y, X) executed

by process Pi in state 〈σ, h〉 is defined as

[[respond read(y, X)]](〈σ, h〉) = 〈σ{next(loci)/loci
, v/y}, h ∧ 〈i, res, rd, X, v〉〉 ,

where v is the value of some write operation to register X which immediately precedes

or is concurrent with the (incomplete) read operation on register X by process Pi.

Execution of respond read also updates the value of program counter loci and records

the value of that read operation in variable y.

Value v can be precisely characterized as follows: Let k = max{r | 1 ≤ r ≤
|h| ∧ h[r] = 〈i, inv, rd, X〉} be an index of the event in history h. Event h[k] then

corresponds to the invocation matching the response of the current read operation on

register X by process Pi. Let m = max{w | ∃j · 1 ≤ w < k ∧ h[w] = 〈j, res, wrt, X〉}
be an index in h. Then h[m] is the event recording the conclusion of the write

operation on X immediately preceding the current read operation on X by Pi; and

n = max{w | ∃j∃y · 1 ≤ w < m ∧ h[w] = 〈j, inv, wrt, X, y〉} is the index in h such

that event h[n] is the invocation matching h[m]. Value v is then any value written by

that write operation 〈n,m〉 or by any subsequent (and therefore concurrent with the

current read operation) write operation on X. That is, ∃w ·n ≤ w ≤ |h| ∧ ∃j ·h[w] =

〈j, inv, wrt, X, v〉) holds.

The meaning of program S is defined in terms of computation sequences. A com-

putation sequence is an infinite sequence 〈σ0, h0〉 τ0−→ 〈σ1, h1〉 τ1−→ 〈σ2, h2〉 τ2−→
〈σ3, h3〉 τ3−→ . . . such that, for all i ≥ 0, the following hold:
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• 〈σi, hi〉 are program states,

• τi are atomically executed transitions (or actions),

• in 〈σi, hi〉, transition τi is enabled, and

• state 〈σi+1, hi+1〉 is the result of executing transition τi in state 〈σi, hi〉.

We assume that every computation sequence of program S is weakly-fair (Francez

1986). That is, if some transition is enabled from some point onwards in a com-

putation sequence, then that transition is taken infinitely often in that computation

sequence. Furthermore, we assume that in state 〈σ0, h0〉 the initial condition described

in Section 6.1 is satisfied.
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CHAPTER 6

PROGRAM SPECIFICATION

6.1 Initial Condition

The initial state 〈σ0, h0〉 of program S models the situation after the last crash or

transient fault has occurred. Such a fault may lead to the assignment of an arbitrary

value to any program variable or register. To model such assignments, the initial

condition does not restrict the values of program variables nor the values recorded in

registers. The initial condition restricts the format and ordering of the initial events

in the history to ensure that histories are well-formed.

In 〈σ0, h0〉, σ0 maps every variable to some admissible value in the variable’s

domain of interpretation, except for crashedi, which is true if Pi is crashed; false

otherwise. History h0 is obtained from the empty history as follows: For every register

X written by process Pi and some arbitrary admissible value v of X, consecutive

events 〈i, inv, wrt, X, v〉 and 〈i, res, wrt, X〉 are appended to h0. In addition, if in σ0

process Pi is not crashed and program counter loci indicates that Pi is at a location

where a read or a write operation on register X is in progress, the following event is

appended to h0: If Pi is at a location where a read operation is in progress, event

〈i, inv, rd, X〉 is appended to h0; and if Pi is at a location where a write operation

is in progress, event 〈i, inv, wrt, X, v〉 is appended to h0, where v is the value of the

preceding write operation to register X in h0.
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6.2 SLEX Specification

We next formalize the notions of a process being in the critical section, a process

being crashed in the critical section, and a process being crashed while trying to

enter the critical section. Hereafter, expression [`a, `b] denotes the set of locations `i,

a ≤ i ≤ b, in program S.

Definition 6.2.1. Let Pi be a process. In any state of program S, we say that

a) Pi is in the critical section, denoted by InCSi, if the most recently written value

to register TRYi is true, and either program counter loci is at a location in

[`19, `20] or Pi is crashed;

b) Pi is crashed in the critical section, denoted by CrashedInCSi, if it is in the

critical section and it is crashed; and

c) Pi is crashed trying to enter the critical section, denoted by CrashedTrying i if

it is crashed, the most recently written value to register Xi is true, and the most

recently written value to register TRYi is false.

Program S is to satisfy the following safety property: At most ` processes are

simultaneously in their critical sections from some moment onwards, provided that

at most ` processes are crashed in the critical section. The program is to satisfy

the following liveness property: Every non-crashed process Pi is infinitely often in its

critical section, provided that less than ` processes are crashed in the critical section.

Definition 6.2.2 (Formal Specification). Program S is to satisfy

a) Safety Property:

|{j | CrashedInCSj}| ≤ ` → 32 (|{i | InCSi}| ≤ `) .

b) Liveness Property:

(|{j | CrashedInCSj}| < ` ∧ ¬crashedi) → 23InCSi .
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The SLEX algorithm in (Abraham, Dolev, Herman, and Koll 2001), see Figure

4.3, satisfies the above safety property; however, it does not satisfy the above liveness

property. Consider, for example, a computation sequence in which ` processes are

crashed trying to enter the critical section and no other process is crashed. That

means that ` processes are crashed with Xj = true and TRYj = false. Hence, |{j |
CrashedInCSj}| = 0 holds. According to the liveness property in Definition 6.2.2(b),

every non-crashed process eventually enters its critical section.

Assume that in the above computation sequence every non-crashed process Pi is

at location loc3 trying to enter its critical section, i.e., Xi = true and TRYi = false

hold. In addition, assume that registers ORDi record such values that function choice

determines that every process crashed trying to enter the critical section has a higher

priority than any non-crashed process. Consequently, those ` crashed processes are

included in set Ai and Ai ≥ ` holds, for every non-crashed process Pi, see Figure 4.3.

Therefore, every non-crashed process Pi always sets its register TRYi to false and

never attempts to enter its critical section. Registers ORDi then remain unchanged

as well as process priorities.

In (Abraham, Dolev, Herman, and Koll 2001), a process is defined to be crashed if

it stops executing its code or if it forever executes its critical section. A process forever

executing its remainder section is, on the other hand, defined to be not crashed.

In (Abraham, Dolev, Herman, and Koll 2001), the SLEX algorithm satisfies the

following (weaker) liveness property: Every non-crashed process that is not forever

in its remainder section eventually enters its critical section, provided less than `

processes are crashed. The latter liveness property is expressed by

(|{j | CrashedInCSj ∨ CrashedTrying j}| < ` ∧ ¬crashedi) → 23InCSi .
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CHAPTER 7

CORRECTNESS PROOF

In this chapter, we give a formal proof that the program in Chapter 4 meets the

safety and liveness properties given in Definition 6.2.2. In Section 7.1, we formulate

some basic properties of the program. Those properties are used throughout the rest

of the correctness proof. Our proof of the safety property in Definition 6.2.2(a) is

the subject of Section 7.2. Section 7.3 contains a proof of the liveness property in

Definition 6.2.2(b).

7.1 Basic Properties

The semantics of read and write commands in Chapter 5 and the initial condition in

Section 6.1 ensure that every process Pi’s sub-history is sequential. Moreover, every

read operation on a register is preceded by some write operation on that register.

Hence, the following lemma holds.

Lemma 7.1.1. In every state of any computation sequence of program S, the history

is well-formed.

Since the critical section and the remainder section are modeled by single atomic

transitions, see Chapter 5, a non-crashed process does not remain in its critical or

its remainder section forever. Consequently, every non-crashed process eventually

reaches location `1.
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Lemma 7.1.2. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property holds:

23loci = `1 .

Assume that, in some state of a computation of program S, the last write operation

on register X immediately precedes the last read operation by process Pi on X. Then

the value of that last read operation on X equals the value of the last write operation

on X. If register Y is an array, a similar property holds for every element of that

array.

Lemma 7.1.3. Let Pi be a non-crashed process, X be a register, Y be an array, and k

be an index in that array. For all computation sequences of program S, the following

properties hold:

a) 2((w = LastWrt(X ) ∧ LastRd(r , i ,X ) ∧ w < r) →Val(r) =Val(w)) and

b) 2((w = LastWrt(Y )∧LastRd(r , i ,Y )∧w < r) →Val(r)[k ] =Val(w)[k ]) .

7.2 Safety Proof

In our proof, we identify all states of program S in which the safety property in

Definition 6.2.2(a) is satisfied. Those states are identified by predicate Synch i, for

every process Pi. Predicate Synch i holds if process Pi has read all the values recorded

in registers VECj, for every process Pj, and, thereafter, updated its register VECi.

Definition 7.2.1. Let Pi be a process. Predicate Synch i is true if, for every process

Pj, the following property holds:

∃r ·OpType(r) = 〈i , rd, VECj〉 ∧ r ≺ LastWrt(VECi) .

We say that process Pi is eventually synchronized if Synch i eventually holds in any

computation sequence of program S.
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Once predicate Synch i holds in some state of a computation sequence, then Synch i

continues to hold. Thus Synch i is a stable property. Note that if Pi is crashed, the

history does not contain any read operations performed by Pi. Therefore, Pi is never

synchronized if it is crashed. In Section 7.3 we will show that every non-crashed

process is eventually synchronized.

7.2.1 Properties of Registers VECi

We first characterize the values of operations on registers VECi. The first lemma

expresses that the value read by process Pi on register VECj is recorded in variable

vi[j], for every process Pj. In addition, process Pi can only complete a read operation

on register VECj, for any process Pj, if Pi is at location `5 or `15.

Lemma 7.2.1. Let Pi be a non-crashed process and Pj be a (possibly crashed) process.

For all computation sequences of program S, the following properties hold:

a) 2(LastRd(r , i , VECj) → vi [j ] =Val(r)) and

b) 2(LastRd(r , i , VECj) → (LastRd(r , i , VECj) U (loci = `5 ∨ loci = `15))) .

The next lemma expresses that process Pi can perform a write operation on register

VECi only if Pi is at location `11.

Lemma 7.2.2. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property holds:

2w = LastWrt(VECi) • (w = LastWrt(VECi)W loci = `11) .

Next we give two properties relating the values of variables veci, tryi, and old tryi

to write operations on register VECi. If process Pi is at location `11, then tryi ∧
¬old tryi holds. And if Pi is at `12 and tryi ∧¬old tryi holds, the value most recently

written to VECi equals veci.
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Lemma 7.2.3. Let Pi be a non-crashed process. For all computation sequences of

program S, the following properties eventually hold:

a) 2(loci = `11 → (tryi ∧ ¬old tryi)) , and

b) 2((loci = `12 ∧ tryi ∧ ¬old tryi) → veci = VECi) .

In the next lemma, we relate the value of variable veci to vi. Process Pi eventually

takes the transition from location `6 to `7. Thus, eventually Pi is at a location in

[`7, `12] and variable veci records the value computed by function report(vi , i).

Lemma 7.2.4. Let Pi be a non-crashed process and Pj be a distinct (possibly crashed)

process. For all computation sequences of program S, the following property eventually

holds:

2(loci ∈ [`7, `12]

→ (veci[i] 6= vi[i][i] ∧ veci[i] 6= vi[j][i].first ∧ veci [i ] 6= vi [j ][i ].second

∧ veci[j].first = vi [j ][j ] ∧ veci [j ].second = vi [i ][j ].first)) .

The following lemma characterizes the dependence of write operations on register

VECi on the values previously read from registers VECj. Because of Lemma 7.2.1(b),

the value of register VECj can be read by non-crashed process Pi only if Pi is at

location `5 or `15. Because of Lemma 7.2.1(a), that value is recorded in variable vi[j].

Because of Lemma 7.2.2, the value of register VECi can be modified only if Pi is at

location `11. Because of Lemma 7.2.3(a)(b), if Pi is at `11, the value of variable veci

is written to VECi. And because of Lemma 7.2.4, that value of veci is dependent on

the values recorded in vi[j]. Hence, the following lemma holds:

Lemma 7.2.5. Let Pi be a non-crashed process and Pj be a distinct (possibly crashed)

process. In addition, let w be a write operation on register VECi, r be a read operation

on register VECi by process Pi, and r′ be a read operation on register VECj by process
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Pi. For all computation sequences of program S, the following properties eventually

hold:

a) 2(r < w → (Val(w)[i] 6=Val(r)[i] ∧Val(w)[j].second =Val(r)[j ].first)) and

b) 2(r′ < w → (Val(w)[i] 6=Val(r′)[i].first ∧Val(w)[i ] 6=Val(r ′)[i ].second

∧Val(w)[j].first =Val(r ′)[j ])) .

Assume that in some computation sequence there exist two consecutive write op-

erations on register VECi in the history, and some read operation by process Pi on

register VECi immediately precedes the later of the two consecutive write operations

on VECi. Assume that some process Pj’s read operation on VECi immediately pre-

cedes some write operation on register VECj. If the first of the two consecutive write

operations on VECi is a value source of the Pj’s read operation on VECi, then the

following holds: (1) The color written to VECi[i] by the later of the two consecutive

write operations on VECi differs from the color written in VECj[i].first ; and (2) the

color written in VECj[j] differs from the color written to VECi[j].second by the later

write operation on VECi.

Lemma 7.2.6. Let Pi and Pj be distinct non-crashed processes. Let wi and w1
i be

write operations on register VECi, and wj be a write operation on register VECj. In

addition, let ri be a read operation on register VECi by process Pi, and rj be a read

operation on register VECi by process Pj. For all computation sequences of program

S, the following property eventually holds:

2((w1
i < ri < wi ∧ rj < wj ∧ValSrc(rj ,w

1
i ))

→ (Val(wi)[i] 6=Val(wj)[i].first ∧Val(wj )[j ] 6=Val(wi)[j ].second)) .

Proof. Let Pi and Pj be distinct non-crashed processes. Consider an arbitrary com-

putation sequence σ of program S such that the property in Lemma 7.2.5 always

holds. Let wi and w1
i be some write operations on register VECi, wj be some write
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operation on register VECj, ri be a read operation on VECi by Pi, and rj be a read

operation on VECi by Pj. Moreover, assume that w1
i < ri < wi holds, rj < wj holds,

and ValSrc(rj ,w
1
i ) holds in σ.

Because of Lemma 7.1.3(a) and from predicate ValSrc, it follows that Val(rj) =

Val(w1
i ) =Val(ri) holds in σ. We distinguish two cases:

a) Val(wi)[i] 6=Val(wj)[i].first holds in σ.

Because of Lemma 7.2.5(a), Val(wi)[i] 6= Val(ri)[i] is satisfied. And because of

Lemma 7.2.5(b), Val(wj)[i].first = Val(rj )[i ] holds. Consequently, Val(wi)[i] 6=
Val(wj)[i].first holds.

b) Val(wj)[j] 6=Val(wi)[j].second holds in σ.

Because of Lemma 7.2.5(b), Val(wj)[j] 6= Val(rj)[j].first is satisfied. Because

of Lemma 7.2.5(a), Val(wi)[j].second = Val(ri)[j ].first holds. Consequently,

Val(wj)[j] 6=Val(wi)[j].second holds.

Assume a read operation ri on register VECj by process Pi immediately precedes

some write operation wi on register VECi. Assume a read operation rj on VECi

by process Pj immediately precedes the last write operation wj on VECj and wj is

immediately preceded by some other write operation on VECj. In addition, assume

that w1
i is the write operation on VECi immediately preceding wi, and there exists

some write operation w2
i on VECi preceding w1

i . If w2
i is the value source of operation

rj, then the color written by operation wi in VECi[i] differs from the color written by

operation wj in VECj[i].second .

Lemma 7.2.7. Let Pi and Pj be distinct non-crashed processes that are eventually

synchronized. Let wi, w1
i , and w2

i be write operations on register VECi, and wj and

w1
j be write operations on register VECj. Let ri be a read operation on VECj by Pi,

and rj be a read operation on VECi by Pj. For all computation sequences of program

S, the following property eventually holds:
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2((w2
i ≺ w1

i < ri < wi ∧ w1
j < rj < wj ∧ wj = LastWrt(VECj) ∧ValSrc(rj ,w

2
i ))

→Val(wi)[i] 6=Val(wj)[i].second) .

Proof. Let Pi and Pj be distinct non-crashed processes. Consider an arbitrary com-

putation sequence σ of program S such that processes Pi and Pj are synchronized and

the properties in Lemmata 7.2.5 and 7.2.6 always hold. Assume that wi, w1
i , w2

i , wj,

w1
j , ri, and rj are the operation as described in the lemma and that w2

i ≺ w1
i < ri < wi

holds, w1
j < rj < wj holds, wj = LastWrt(VECj) holds, andValSrc(rj ,w

2
i ) holds in σ.

First note that w1
i does not precede rj. (Otherwise, by the program semantics,

read operation rj can read only the value written by w1
i or wi.) Hence, Start(rj ) <

Concl(w 1
i ) is satisfied, and because w1

j < rj and w1
i < ri hold, it follows that w1

j ≺ ri

is satisfied in σ. We therefore distinguish two cases:

a) ValSrc(ri ,w
1
j ) holds in σ.

Then, because of Lemma 7.2.6, Val(wi)[i] 6=Val(wj)[i].second holds.

b) ValSrc(ri ,wj ) holds in σ.

Then, because of Lemma 7.2.5(b), Val(wi)[i] 6=Val(wj)[i].second holds.

Now we relate the values recorded in variables vi[i] and vi[j], provided that pro-

cesses Pi and Pj are not crashed. Intuitively, if process Pi is at a location in [`17, `20]

and register VECi was updated later than register VECj, the color recorded in variable

vi[i][i] differs from the first or the second color recorded in vi[j][i].

Lemma 7.2.8. Let Pi and Pj be distinct non-crashed processes that are eventually

synchronized. For all computation sequences of program S, the following property

eventually holds:

2((loci ∈ [`17, `20] ∧ Concl(LastWrt(VECj)) < Concl(LastWrt(VECi)))

→ (vi[i][i] 6= vi[j][i].first ∨ vi [i ][i ] 6= vi [j ][i ].second)) .
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Proof. Consider any state of a computation sequence of program S after processes Pi

and Pj are synchronized and the property in Lemma 7.2.7 always holds. Then there

exist read operations r′ and r′′ such that LastRd(r ′, i , VECi) and LastRd(r ′′, i , VECj)

hold. Because of Lemma 7.2.1(a), vi[i] = Val(r′) and vi[j] = Val(r′′). Assume Pi

is at a location in [`17, `20] and wi = LastWrt(VECi), wj = LastWrt(VECj), and

Concl(wj ) < Concl(wi) hold. Because of Lemmata 7.2.1(b) and 7.2.2, wi < r′ and

wi < r′′ is satisfied. Consequently, ValSrc(r ′,wi) holds because wi is the last write

operation to VECi, and ValSrc(r ′′,wj ) holds because wj is the last write operation to

VECj and Concl(wj ) < Concl(wi) holds.

Let ri be Pi’s read operation on register VECi such that ri < wi. Let w1
i be the

write operation on register VECi such that w1
i < ri, and w2

i be a write operation

on VECi such that w2
i ≺ w1

i , provided such an operation exists. Let rj be Pj’s read

operation on VECi such that rj < wj. Let w1
j be the write operation to register VECj

such that w1
j < rj, and w2

j be a write operation to VECj such that w2
j ≺ w1

j , provided

such an operation exists. Because Synch i and Synchj hold, operations ri, w1
i , rj, and

w1
j exist. Since rj < wj and Concl(wj ) < Concl(wi) hold, we consider three cases:

a) ValSrc(rj ,wi) holds.

Then Start(wi) < Concl(rj ) holds. Because ri < wi and rj < wj, we consider

two subcases:

i) ValSrc(ri ,w
1
j ) holds.

Then, because of Lemma 7.2.6, Val(wi)[i] 6=Val(wj)[i].first holds. Conse-

quently, vi[i] 6= vi[j].first holds.

ii) ValSrc(ri ,w
2
j ) holds, for some w2

j .

Then, because of Lemma 7.2.7, Val(wi)[i] 6=Val(wj)[i].second holds. Con-

sequently, vi[i] 6= vi[j].second holds.

b) ValSrc(rj ,w
1
i ) holds.
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Then, because of Lemma 7.2.6,Val(wi)[i] 6=Val(wj)[i].first holds. Consequently,

vi[i] 6= vi[j].first holds.

c) ValSrc(rj ,w
2
i ) holds, for some w2

i .

Then, because of Lemma 7.2.7, Val(wi)[i] 6= Val(wj)[i].second holds. Conse-

quently, vi[i] 6= vi[j].second holds.

We now relate the values read from registers VECi and VECj and recorded in vari-

ables vi[i] and vi[j], provided that process Pj is crashed. Because of Lemma 7.2.5(b),

if process Pj is crashed, the color written in VECi[i] differs from the first and second

colors in VECj[i]. Thereafter, the values of VECi and VECj are recorded in variables

vi[i] and vi[j], respectively, when Pi is at a location in [`17, `20].

Lemma 7.2.9. Let Pi be a non-crashed process that is eventually synchronized, and

Pj be a crashed process. For all computation sequences of program S, the following

property eventually holds:

2(loci ∈ [`17, `20] → (vi[i][i] 6= vi[j][i].first ∧ vi [i ][i ] 6= vi [j ][i ].second)) .

7.2.2 Properties of Registers TRYi

In this subsection, we formulate properties about operations on registers TRYi.

The first lemma expresses that the value read by process Pi on register TRYj is

recorded in variable ti[j], for every process Pj. Moreover, process Pi can complete

a read operation on register TRYj, for any process Pj, only if Pi is at location `8.3 or

in `16.

Lemma 7.2.10. Let Pi be a non-crashed process and Pj be a (possibly crashed) pro-

cess. For all computation sequences of program S, the following properties hold:

a) 2(LastRd(r , i , TRYj) → ti [j ] =Val(r)) and

b) 2(LastRd(r , i , TRYj) → (LastRd(r , i , TRYj) U (loci = `8.3 ∨ loci = `16))) .
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We next express that process Pi can perform a write operation on register TRYi

only if it is at location `9 or `20.

Lemma 7.2.11. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property holds:

2w = LastWrt(TRYi) • (w = LastWrt(TRYi)W (loci = `9 ∨ loci = `20)) .

The value of variable old tryi remains the same until process Pi is at location `8.

Lemma 7.2.12. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property holds:

2y = old tryi • (y = old tryi W loci = `8) .

The value of variable tryi remains the same until process Pi is at location `9.

Lemma 7.2.13. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property holds:

2y = tryi • (y = tryi W loci = `9) .

If process Pi is at a location in [`8, `9], the value of variable old tryi equals the

value recorded in register TRYi.

Lemma 7.2.14. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property eventually holds:

2(loci ∈ [`8, `9] → old tryi = TRYi) .

If process Pi is at a location in [`10, `20], the value of variable tryi equals the value

recorded in register TRYi. If Pi is at a location in [`13, `20], the value of variable tryi

is true.

Lemma 7.2.15. Let Pi be a non-crashed process. For all computation sequences of

program S, the following properties eventually hold:
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a) 2(loci ∈ [`10, `20] → tryi = TRYi) and

b) 2(loci ∈ [`13, `20] → tryi = true) .

Once register TRYi records false, that value can change only if process Pi is at

location `9 and tryi ∧ ¬old tryi holds.

Lemma 7.2.16. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property eventually holds:

2(TRYi = false → (TRYi = false W (loci = `9 ∧ tryi ∧ ¬old tryi))) .

Proof. Consider any state of a computation sequence of program S after the property

in Lemma 7.2.14 always holds. Assume that TRYi = false holds. Because of Lemma

7.2.11, a write operation on TRYi can be performed only if Pi is at location `20 or `9.

If Pi is at `20, the value of TRYi remains false. Assume process Pi is at location `9.

Then, because of Lemmata 7.2.12 and 7.2.14, ¬old tryi holds. If tryi also holds, we

are done. If ¬tryi holds at location `9, then the value of the last write operation to

register TRYi remains false.

Once register TRYi records true, that value can be changed only if process Pi is

at location `9 and ¬tryi ∧ old tryi holds, or Pi is at `20.

Lemma 7.2.17. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property eventually holds:

2(TRYi = true → (TRYi = true

W ((loci = `9 ∧ ¬tryi ∧ old tryi) ∨ loci = `20))) .

Proof. Consider any state of a computation sequence of program S after the property

in Lemma 7.2.14 always holds. Assume that TRYi = true. Because of Lemma 7.2.11,

a write operation to TRYi can be performed only if Pi is at location `20 or `9. If Pi is

at `20, we are done. Assume process Pi is at location `9. Then, because of Lemmata
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7.2.12 and 7.2.14, old tryi holds. If ¬tryi also holds, we are done. Assume tryi holds

at location `9. Then the value of the last write operation to register TRYi remains

true.

Assume processes Pi and Pj are synchronized and the last write operation on

register VECj completes earlier than the last write operation on VECi. If Pi is at

a location in [`17, `20], variable ti[j] is true.

Lemma 7.2.18. Let Pi and Pj be non-crashed processes that are eventually synchro-

nized. For all computation sequences of program S, the following property eventually

holds:

2((loci ∈ [`17, `20] ∧ locj ∈ [`17, `20]

∧ Concl(LastWrt(VECj)) ≤ Concl(LastWrt(VECi)))

→ ti[j] = true) .

Proof. Consider any state of a computation sequence of program S after processes

Pi and Pj are synchronized and the properties in Lemmata 7.2.3, 7.2.15, 7.2.16, and

7.2.17 always hold. Assume Pj is at a location in [`17, `20] and wj = LastWrt(VECj)

holds. Because Pj is synchronized, there exists write operation w′ to register TRYj

such that w′ < wj. Because of Lemmata 7.2.3 and 7.2.15(a), the value of w′ is true.

Because of Lemma 7.2.15(b), the value of the last write operation to TRYj is also

true. Because of Lemmata 7.2.3, 7.2.16, and 7.2.17, every write operation to TRYj

performed after w′ has value true. Assume loci ∈ [`17, `20], wi = LastWrt(VECi),

and Concl(wj ) ≤ Concl(wi) hold. Let r be the last read operation on TRYj by

Pi. Because Pi is at a location in [`17, `20], wi ≺ r holds. Because w′ < wj and

Concl(wj ) ≤ Concl(wi) hold, it follows that w′ ≺ r is satisfied. Because of Lemma

7.1.3(a), we obtain that Val(r) = true. Consequently, because of Lemma 7.2.10(a),

ti[j] = true.
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Finally, the value of the last write operation on register TRYj remains unchanged

if Pj is crashed. That value is recorded in variable ti[j], for every non-crashed process

Pi.

Lemma 7.2.19. Let Pj be a crashed process. For all computation sequences of pro-

gram S and every non-crashed process Pi, the following property eventually holds:

2ti[j] = TRYj .

7.2.3 The Safety Property

We first formulate some properties about the values of variable Bi.

Lemma 7.2.20. Let Pi be a non-crashed process. For all computation sequences of

program S, the following properties eventually hold:

a) 2(loci ∈ [`18, `20] → Bi = {j | ti[j] ∧ ¬dominates(vi , j , i)}) and

b) 2(loci ∈ [`19, `20] → |Bi| ≤ `) .

Next we show which processes are identified by a non-crashed process as trying

to enter the critical section. Assume a non-crashed process Pi is synchronized and

is at a location in [`18, `20]. Then variable Bi records every process Pk satisfying the

following: Either Pk is crashed in the critical section, or the value of register TRYk

is true and the last write operation to VECk completed earlier than the last write

operation to VECi.

Lemma 7.2.21. Let T = {k | Synchk ∧ lock ∈ [`18, `20]} be a set of processes and

ω : {1, . . . , |T |} → T be the one-to-one correspondence satisfying the following: If

wω(j) is the last write to register VECω(j) and wω(j+1) is the last write to register

VECω(j+1), then Concl(wω(j )) < Concl(wω(j+1)) holds, for all j = 1, . . . , |T |−1. Then,

for all computation sequences of program S, the following property eventually holds:
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2(1 ≤ i ≤ |T | → |Bω(i)| ≥ i + |{k | CrashedInCSk}|) .

Proof. Consider any state of a computation sequence of program S after the prop-

erties in Lemmata 7.2.9, 7.2.8, 7.2.19, 7.2.18, and 7.2.20 always hold. Let ω be the

correspondence in the lemma. Assume 1 ≤ i ≤ |T | holds and Pj is an arbitrary

process.

a) {k | CrashedInCSk} ⊆ Bω(i) holds.

Because ω(i) ∈ T , Synchω(i) and locω(i) ∈ [`18, `20] hold. Let Pj be a process in

{k | CrashedInCSk}. Because Pj is crashed in the critical section, j /∈ T and

therefore j 6= ω(i). Moreover, because of Lemma 7.2.19, tω(i)[j] is true. Be-

cause of Lemma 7.2.9, ¬dominates(vω(i), j , ω(i)) holds. Consequently, because

of Lemma 7.2.20(a), j ∈ Bω(i) holds.

b) {ω(k) | 1 ≤ k < i} ⊆ Bω(i) holds.

Let Pj be a process in {ω(k) | 1 ≤ k < i}. Then, for some k < i, j =

ω(k) holds. Because ω(k) ∈ T and ω(i) ∈ T hold, Synchj ∧ locj ∈ [`18, `20]

and Synchω(i) ∧ locω(i) ∈ [`18, `20] hold. Moreover, the last write operation to

register VECj completed earlier than the last write operation to register VECω(i).

Therefore, because of Lemma 7.2.18, tω(i)[j] is true. Because of Lemma 7.2.8,

predicate ¬dominates(vω(i), j , ω(i)) holds. Consequently, because of Lemma

7.2.20(a), Pj ∈ Bω(i) holds.

c) {ω(i)} ⊆ Bω(i) holds.

Let j = ω(i) hold. Because j ∈ T , Synchj and locj ∈ [`18, `20] hold. Be-

cause of Lemma 7.2.18, tj[j] is true. Also ¬dominates(vj , j , j ) trivially holds.

Consequently, because of Lemma 7.2.20(a), Pj ∈ Bω(i) holds.

From the above it follows that Bω(i) ⊇ {ω(k) | 1 ≤ k ≤ i} ∪ {k | CrashedInCSk}.
Consequently, |Bω(i)| ≥ i + |{k | CrashedInCSk}| holds.
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The next theorem states that the self-stabilizing `-exclusion algorithm satisfies

the safety property.

Theorem 7.1. For all computation sequences of program S, the following property

holds:

|{j | CrashedInCSj}| ≤ ` → 32 |{i | InCSi}| ≤ ` .

Proof. Consider an arbitrary computation sequence σ of program S. We first show

that every non-crashed process Pi which enters and leaves its critical section infinitely

often eventually remains synchronized. When Pi leaves the critical section, it writes

false to register TRYi. By Lemma 7.1.2, Pi is eventually at location `5 and reads the

values recorded in registers VECj, for every process Pj. Because of Lemma 7.2.16,

process Pi sets TRYi to true and attempts to enter its critical section only if loci =

`9∧tryi∧¬old tryi holds. Because of Lemmata 7.2.13, 7.2.12, and 7.2.3(b), thereafter,

the value of veci is written in register VECi; hence, Synch i holds.

Consider any suffix σ(n), n ≥ 0, of computation sequence σ such that the properties

in Lemmata 7.2.20 and 7.2.21 always hold and, for every process Pi, either Synch i

always holds or ¬Synch i always holds. Note that if ¬Synch i always holds, process Pi

remains outside the critical section or it is crashed.

Assume the number of processes crashed in the critical section is at most `. Be-

cause of Lemma 7.2.20(b), process Pi is in the critical section only if |Bi| < ` holds.

Because of Lemma 7.2.21, there is a linear ordering of non-crashed processes in the

critical section such that every process Pi records in variable Bi at least the indices

of all processes crashed in the critical section and processes with indices lesser in the

above ordering than Pi. Hence, there are at most `− |{k | CrashedInCSk}| processes

for which |Bi| ≤ ` holds. Consequently, the number of processes in the critical section

is at most `.
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7.3 Liveness Proof

In this section, we give a formal proof that the SLEX algorithm in Chapter 4

satisfies the liveness property in Definition 6.2.2(b). In Subsection 7.3.1 we formulate

some properties of operations on registers Xi and ORDi. Subsection 7.3.2 presents

several properties about shifting the values recorded in registers VECi. Thereafter,

in Subsection 7.3.3, we show that every non-crashed process Pi eventually identifies

the set of processes which are crashed or repeatedly enter and leave their critical

sections while Pi is attempting to enter its critical section. In Subsection 7.3.4, we

state several properties of functions Select and Prior . Those properties are used in

Subsection 7.3.5, where we show that the number of processes that can enter the

critical section before some specific process is bounded. In Subsection 7.3.6, we show

that every non-crashed process eventually has the highest priority or it enters its

critical section. Finally, in Subsection 7.3.7, we show that if at most ` processes are

crashed in the critical section and some non-crashed process has the highest priority

among non-crashed processes, then that highest priority process eventually enters its

critical section.

7.3.1 Properties of Registers Xi and ORDi

A write operation on register Xi is performed only if process Pi is at location `2 or

`21. If the value most recently written to Xi is false, that value remains false unless

Pi is at `2. And if the value most recently written to Xi is true, Xi’s value remains

true unless Pi is at `21.

Lemma 7.3.1. Let Pi be a non-crashed process. For all computation sequences of

program S, the following properties hold:

a) 2w = LastWrt(Xi) • (w = LastWrt(Xi)W (loci = `2 ∨ loci = `21)) ,

b) 2(Xi = false → (Xi = false W loci = `2)) , and
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c) 2(Xi = true → (Xi = true W loci = `21)) .

The value of a read operation by process Pi on register Xk is recorded in variable

xi[k], for every process Pk. Process Pi completes a read operation on Xk only if Pi is

at location `8.4 and program variable ji equals k.

Lemma 7.3.2. Let Pi and Pk be processes. For all computation sequences of program

S, the following properties eventually hold:

a) 2(LastRd(r , i , Xk) → xi [k ] =Val(r)) and

b) 2(LastRd(r , i , Xk) → (LastRd(r , i , Xk)W (loci = `8.4 ∧ ji = k))) .

A write operation on register ORDi is performed only if process Pi is at location

`23.

Lemma 7.3.3. Let Pi be a process. For all computation sequences of program S, the

following property holds:

2w = LastWrt(ORDi) • (w = LastWrt(ORDi)W loci = `23) .

The value of a read operation by process Pi on register ORDk is recorded in variable

ord i[k], for every process Pk. Eventually, process Pi completes a read operation on

ORDk only if Pi is at location `8.7, program variable ji equals k, and ai[k] equals true.

Lemma 7.3.4. Let Pi and Pk be processes. For all computation sequences of program

S, the following properties eventually hold:

a) 2(LastRd(r , i , ORDk) → ord i [k ] =Val(r)) and

b) 2(LastRd(r , i , ORDk)

→ (LastRd(r , i , ORDk)W (loci = `8.7 ∧ ji = k ∧ ai [k ] = true))) .

The value of variable ai[k] does not change unless non-crashed process Pi is at

location `8.5 and ji = k, for any process Pk. In addition, if Pi is at a location in

[`8.8, `8.10], then the value of ai[k] equals xi[k] ∨ ti[k].
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Lemma 7.3.5. Let Pi be a non-crashed process. For every process Pk and all com-

putation sequences of program S, the following properties eventually hold:

a) 2y = ai[k] • (ai[k] = yW (loci = `8.5 ∧ ji = k)) ,

b) 2(loci ∈ [`8.8, `8.10] → (ai[k] = xi[k] ∨ ti[k])) , and

c) 2ai[i] = true .

The value of variable ord i[k] does not change unless non-crashed process Pi is at

location `8.7, ji = k, and ai[k] equals true, for any process Pk.

Lemma 7.3.6. Let Pi be a non-crashed process. For every process Pk and all com-

putation sequences of program S, the following property eventually holds:

2y = ord i[k] • (y = ord i[k]W (loci = `8.7 ∧ ji = k ∧ ai[k] = true)) .

If some non-crashed process Pi is at location `23, then the value of program variable

row i equals change(ord i , γ(ai), i).

Lemma 7.3.7. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property eventually holds:

2(loci = `23 → row i = change(ord i , γ(ai), i)) .

If the value most recently written to register TRYi is true, then the value most

recently written to register Xi is also true, for every non-crashed process Pi.

Lemma 7.3.8. Let Pi be a non-crashed process. For all computation sequences of

program S, the following property eventually holds:

2(TRYi = true → Xi = true) .

Every non-crashed process eventually performs read operations on registers VECi,

TRYi, and Xi, for every process Pi.
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Lemma 7.3.9. Let Pj be a non-crashed process and Pi be a (possibly crashed) process.

For all computation sequences of program S, the following properties hold:

a) 2(w = LastWrt(VECi) •3∃r · LastRd(r , j , VECi) ∧ w ≺ r) ,

b) 2(w = LastWrt(TRYi) •3∃r · LastRd(r , j , TRYi) ∧ w ≺ r) , and

c) 2(w = LastWrt(Xi) •3∃r · LastRd(r , j , Xi) ∧ w ≺ r) .

7.3.2 Shifting Colors in Registers VECi

Assume that no write operation is ever performed on register VECi, for some

process Pi. Then, for any distinct process Pj, either color VECj[i].first eventually

remains set to the color of process Pi, or eventually register VECj is never updated.

Lemma 7.3.10. Let Pi and Pj be distinct processes. For all computation sequences

of program S, the following property eventually holds:

2(wi = LastWrt(VECi) •2wi = LastWrt(VECi)

→ ( 32VECj[i].first = VECi[i ]

∨3(wj = LastWrt(VECj) •2wj = LastWrt(VECj)))) .

Proof. Let Pi and Pj be distinct processes. Consider an arbitrary computation

sequence σ of program S after the property in Lemma 7.2.4 always holds. As-

sume that variable wi is frozen to the last write operation on VECi and always

wi = LastWrt(VECi) holds in σ. In addition assume that Pj is not crashed and

always wj = LastWrt(VECj) • 3wj 6= LastWrt(VECj) holds in σ. (Otherwise, the

property formulated in the lemma is trivially true.)

Because of Lemmata 7.1.3(a), 7.2.1(a), and 7.3.9(a), there exists suffix σ(n), n ≥ 0,

of computation sequence σ such that always vj[i] = VECi holds. Because of Lemma

7.2.4, it always holds in σ(n) that if locj = `11 holds, then vecj[i].first = vj [i ][i ] =

VECi[i ] holds (1). Because of Lemma 7.2.2, always 3locj = `11 holds. Hence, there
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exists suffix σ(n1), n1 ≥ n, such that VECj = vecj holds in σ(n1). And because of (1),

always VECj[i].first = VECi[i ] holds in σ(n1).

Assume that no write operation is ever performed on register VECi, for some

process Pi. Then, for any process Pj distinct from Pi, either colors VECj[i].first and

VECj[i].second eventually remain set to the color of process Pi, or eventually register

VECj is never updated.

Lemma 7.3.11. Let Pi and Pj be distinct processes. For all computation sequences

of program S, the following property eventually holds:

2(wi = LastWrt(VECi) •2wi = LastWrt(VECi)

→ ( 32(VECj[i].second = VECj[i ].first = VECi[i ])

∨3(wj = LastWrt(VECj) •2wj = LastWrt(VECj)))) .

Proof. Let Pi and Pj be distinct processes. Consider an arbitrary computation se-

quence σ of program S after the properties in Lemmata 7.2.4 and 7.3.10 always hold.

Assume that variable wi is frozen to the last write operation on VECi and always

wi = LastWrt(VECi) holds in σ (1). In addition assume that Pj is not crashed and

always wj = LastWrt(VECj) •3wj 6= LastWrt(VECj) holds in σ (2). (Otherwise, the

property formulated in the lemma is trivially true.)

Because of (1) and Lemmata 7.1.3(a), 7.2.1(a), and 7.3.9(a), there exists suffix

σ(n), n ≥ 0, of computation sequence σ such that always vj[i] = VECi holds (3).

Because of (1), (2), and Lemma 7.3.10, there exists suffix σ(n1), n1 ≥ n, such that

always VECj[i].first = VECi[i ] holds (4). Because of (1), (4), and Lemmata 7.1.3(b),

7.2.1(a), and 7.3.9(a), there exists suffix σ(n2), n2 ≥ n1, such that always vj[j][i].first =

VECj[i ].first holds (5). Because of Lemma 7.2.4, it always holds in σ(n2) that if

locj = `11 holds, then vecj[i].first = vj [i ][i ] ∧ vecj [i ].second = vj [j ][i ].first holds (6).

Because of Lemma 7.2.2, always 3locj = `11 holds. Hence, there exists suffix σ(n3),
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n3 ≥ n2, such that VECj = vecj holds in σ(n3). And because of (3), (4), (5), and (6),

it follows that VECj[i].second = VECj[i ].first = VECi[i ] always holds in σ(n3).

7.3.3 Identification of Possibly Crashed Processes

Let expression Em(i) denote the set of all process indices identified by non-crashed

process Pm as trying to enter their critical sections and which do not dominate process

Pi. Intuitively, those are the crashed (or ‘very slow’) processes trying to enter the

critical section.

Definition 7.3.1. Let Pm be a non-crashed processes and Pi be a (possibly crashed)

process. We define Em(i) = {j | tm[j] ∧ ¬dominates(vm , j , i)}.

For non-crashed process Pi, sets Ai and Bi can be described by means of sets Ei

and program variable pi. Variable pi records indices of processes which have higher

priorities than Pi.

Lemma 7.3.12. Let Pi be a non-crashed process. For all computation sequences of

program S, the following properties eventually hold:

a) 2(loci = `18 → Bi = Ei(i)) ,

b) 2(loci ∈ [`8.9, `8.10] → pi = π(choice(ord i , γ(ai)), i) , and

c) 2(loci = `8.10 → Ai = {j | ti[j] ∧ j ∈ pi} ∪
⋃

i′∈pi

(Ei(i
′) \ {i})) .

If no write operation is ever performed on register VECi, for some process Pi, then

either every non-crashed process Pm eventually identifies process Pj as permanently

dominating Pi, or eventually register VECj is never updated.

Lemma 7.3.13. Let Pm be a non-crashed process, and Pi and Pj be (possibly crashed)

processes. For all computation sequences of program S, the following property even-

tually holds:
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2(wi = LastWrt(VECi) •2wi = LastWrt(VECi)

→ ( 32dominates(vm , j , i)

∨3(wj = LastWrt(VECj) •2wj = LastWrt(VECj)))) .

Proof. Let Pm be a non-crashed process, and Pi and Pj be distinct processes. (If

i = j, the property in the lemma is trivially true.) Consider an arbitrary compu-

tation sequence σ of program S after the property in Lemma 7.3.11 always holds.

Assume that variable wi is frozen to the last write operation on VECi and always

wi = LastWrt(VECi) holds in σ (1). In addition assume that Pi is distinct from Pj

and always wj = LastWrt(VECj) •3wj 6= LastWrt(VECj) holds in σ (2). (Otherwise,

the property in the lemma is trivially true.)

Because of (1) and Lemmata 7.1.3(a), 7.2.1(a), and 7.3.9(a), there exists suffix

σ(n), n ≥ 0, of computation sequence σ such that always vm[i] = VECi holds (3).

Because of (1), (2), and Lemma 7.3.11, there exists suffix σ(n1), n1 ≥ n, such that

always VECj[i].second = VECj[i ].first = VECi[i ] holds (4). Because of (1), (4),

and Lemmata 7.1.3(b), 7.2.1(a), and 7.3.9(a), there exists suffix σ(n2), n2 ≥ n1, such

that always vm[j][i].second = VECj[i ].second and vm[j][i].first = VECj[i ].first hold

(5). Because of (1), (3), (4), and (5), it follows that vm[j][i].second = vm [j ][i ].first =

vm [i ][i ] always holds in σ(n2). Hence, dominates(vm , j , i) always holds in σ(n2).

Assume that no write operation is ever performed on register VECi, for some

process Pi. Then every non-crashed process Pm eventually identifies the set of process

indices that never dominate Pi.

Lemma 7.3.14. Let Pm be a non-crashed process, Pi be a (possibly crashed) pro-

cess, and Dm(i) = {j | ¬dominates(vm , j , i)} be a set of process indices. For all

computation sequences of program S, the following property eventually holds:

2(w = LastWrt(VECi) •2w = LastWrt(VECi) → 3y = Dm(i) •2y = Dm(i)) .
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Proof. Let Pm be a non-crashed process, and Pi be a (possible crashed) process.

Consider an arbitrary computation sequence σ of program S after the property in

Lemma 7.3.13 always holds. Assume that variable wi is frozen to the last write

operation on VECi and always wi = LastWrt(VECi) holds in σ (1).

Because of (1) and Lemmata 7.1.3(a), 7.2.1(a), and 7.3.9(a), there exists suffix

σ(n), n ≥ 0, of computation sequence σ such that always vm[i] = VECi holds (2).

Consider an arbitrary process Pj. We distinguish two cases:

a) 3(wj = LastWrt(VECj) •2wj = LastWrt(VECj)) holds in σ(n).

There exists suffix σ(n1), n1 ≥ n, such that always wj = LastWrt(VECj)•2wj =

LastWrt(VECj) holds (3). Because of (3) and Lemmata 7.1.3(a), 7.2.1(a), and

7.3.9(a), there exists suffix σ(n2), n2 ≥ n1, such that always vm[j] = VECj holds

(4). Because of (2) and (4), it follows that dominates(vm , j , i) in σ(n2) iff always

dominates(vm , j , i) in σ(n2).

b) 2(wj = LastWrt(VECj) •3wj 6= LastWrt(VECj)) holds in σ(n).

Because of (1) and Lemma 7.3.13, there exists suffix σ(n3), n3 ≥ n, such that

always dominates(vm , j , i) holds in σ(n3).

Assume that no write operation is ever performed on register VECi, for some

process Pi. Then eventually the value written in register TRYi remains the same.

Lemma 7.3.15. Let Pi be a process. For all computation sequences of program S,

the following property holds:

2(w = LastWrt(VECi) •2w = LastWrt(VECi)

→ 3(y = TRYi •2y = TRYi)) .

Proof. Let Pi be a process. Consider an arbitrary computation sequence σ of program

S after the property in Lemma 7.2.16 always holds. Assume that variable wi is frozen

to the last write operation on VECi and always wi = LastWrt(VECi) holds in σ (1).
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We prove the property in the lemma by contradiction. Thus assume that always

y = TRYi •3y 6= TRYi holds in σ (2).

Because of (2), process Pi is not crashed and there exists suffix σ(n), n ≥ 0, of

computation sequence σ such that TRYi = false holds. Because of (2) and Lemma

7.2.16, there exists suffix σ(n1), n1 ≥ n, such that loci = `9 ∧ tryi ∧ ¬old tryi holds.

Consequently, eventually loci = `11 and eventually wi 6= LastWrt(VECi) holds, which

is a contradiction to (1).

Finally assume that no write operation is ever performed on register VECi, for

some process Pi. Then every non-crashed process Pm eventually identifies the set of

processes that are permanently attempting to enter their critical section and non-

dominating to process Pi.

Lemma 7.3.16. Let Pm be a non-crashed process. For all computation sequences of

program S, and every process Pi, the following property holds:

2(w = LastWrt(VECi) •2w = LastWrt(VECi)

→ 3(y = Em(i) •2y = Em(i))) .

Proof. Let Pm be a non-crashed process, and Pi be a (possible crashed) process.

Consider an arbitrary computation sequence σ of program S after the properties in

Lemmata 7.3.14 and 7.3.15 always hold. Assume that variable wi is frozen to the last

write operation on VECi and always wi = LastWrt(VECi) holds in σ (1).

Because of (1) and Lemma 7.3.14, there exists suffix σ(n), n ≥ 0, of computation se-

quence σ such that U = {j | ¬dominates(vm , j , i)} •2U = {j | ¬dominates(vm , j , i)}
holds. Because of (1) and Lemma 7.3.15, there exists suffix σ(n1), n1 ≥ n, such that

V = {j | TRYj = true} • 2V = {j | TRYj = true} holds (2). Because of (2) and

Lemmata 7.1.3(b), 7.2.10(a), and 7.3.9(a), there exists suffix σ(n2), n2 ≥ n1, such that

always tm[j] = TRYj holds, for every j ∈ V . Hence W = {j | tm[j] = true} •2W =
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{j | tm [j ] = true} holds in σ(n2). By definition Em(i) = U ∩ W holds. Therefore,

y = Em(i) •2y = Em(i) holds in σ(n2).

7.3.4 Properties of Functions Select and Prior

In this subsection, we describe several properties of functions Select and Prior .

As in (Abraham, Dolev, Herman, and Koll 2001), we define the relation of matrix

extension with respect to a set of indices. Intuitively, one matrix is an extension of

another matrix if both the matrices record the same values in the rows in the set

of indices. The concept of matrix extension is used to relate the values recorded in

bit-matrices ord in the program.

Definition 7.3.2. Let M and M ′ be two r × s matrices and A be a set of indices.

We say that M ′ is an extension of M with respect to A, denoted by M ′ ¤A M , if row

M ′[i] equals row M [i], for every index i ∈ A.

The relation of matrix extension with respect to a set of indices is an equivalence

relation.

We next formulate three properties of function Select . Assume M is an N × N

bit-matrix recording in row z, for every process Pz, the value of register ORDz. In

addition, assume that k, 1 ≤ k ≤ N , is an integer, and A is a set of process indices. (1)

If the value Prior(M ,A, i , k) equals M [i][k], then the value of function Select(M ,A, k)

does not depend on the presence or absence of index i in set A. (2) In this case, process

index i is not selected by function Select(M ,A, k). (3) The process index selected in

column k of bit-matrix M does not depend on the values recorded in those rows of

bit-matrix M which correspond to the process indices not present in set A.

Lemma 7.3.17. Let Pi and Pj be processes, M be a bit-matrix, k, 1 ≤ k ≤ N , be

an integer, and A be a set of process indices such that A \ {i} 6= ∅ holds. Then the

following properties hold:
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a) M [i][k] = Prior(M ,A, i , k) → Select(M ,A, k) = Select(M ,A \ {i}, k) ,

b) Select(M ,A, k) = Select(M ,A \ {i}, k) → Select(M ,A, k) 6= i , and

c) M ′ ¤A M → Select(M ,A, k) = Select(M ′,A, k) .

Intuitively, property (a) holds because if in column k the parity of process Pi is the

same as the parity of its previous active process, by definition the parity of Pi does not

influence the outcome of function Select ; then also (b) Pi is not selected in column k.

Moreover, (c) parities of inactive processes do not influence the outcome of function

Select .

We next focus on function Prior . Using the same notation as above, we show

that (1) The value of Prior(M ,A, i , k) does not depend on the presence of index

i in set A. (2) The value of Prior(M ,A, i , k) does not depend on the presence of

those indices j in set A which are different from the previous process of process Pi,

or for which the value recorded in M [j][k] equals Prior(M ,A, j , k). (3) The value of

Prior(M ,A, i , k) does not depend on the values recorded in those rows of bit-matrix

M which correspond to the process indices not present in set A.

Lemma 7.3.18. Let Pi and Pj be processes, M be a bit-matrix, k, 1 ≤ k ≤ N , be

an integer, and A be a set of process indices such that A \ {i} 6= ∅ holds. Then the

following properties hold:

a) Prior(M ,A, i , k) = Prior(M ,A \ {i}, i , k) ,

b) (j 6= Prev(A, i) ∨M [j ][k ] = Prior(M ,A, j , k))

→ Prior(M ,A, i , k) = Prior(M ,A \ {j}, i , k), and

c) M ′ ¤A M → Prior(M ,A, i , k) = Prior(M ′,A, i , k) .

In essence, property (a) holds because, by definition, the parity of the previous active

process to process Pi (and not of Pi itself) is the new parity of Pi. Moreover, (b)
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if Pi is not the previous active process to process Pj, then the parity of Pi does not

influence the new parity of Pj; similarly, if the parity of Pi is the same as the parity

of its previous active process, the same parity will be assigned to Pj independently

of whether Pi is active. Finally, (c) parities of inactive processes do not influence the

new parity of Pi.

7.3.5 Bounding Changes of Register ORDi[k]

Intuitively, a flip on a register is defined as a (possibly incomplete) write operation

that changes the value recorded in that register.

Definition 7.3.3. Let Pi be a process, X be a register, Y be a register recording an

array, k be an index in that array, and op be an operation. We define state predicates

a) Flip(op,X ) ≡ OpType(op) = 〈wrt,X 〉
∧ ((OpType(op ′) = 〈wrt,X ) ∧ op ′ < op)

→Val(op ′) 6=Val(op)) ,

b) Flip(op,Y [k ]) ≡ OpType(op) = 〈wrt,Y 〉
∧ ((OpType(op ′) = 〈wrt,Y ) ∧ op ′ < op)

→Val(op ′)[k] 6=Val(op)[k ]) ,

c) op = LastFlip(X ) iff Flip(op,X ) ∧ (Flip(op ′,X ) → op ′ ¹ op) , and

d) op = LastFlip(Y [k ]) iff Flip(op,Y [k ]) ∧ (Flip(op ′,Y [k ]) → op ′ ¹ op) .

We say that operation op is a flip on register X (or register Y [k]) if Flip(op,X ) (or

Flip(op,Y [k ])) holds. The latest such operation op in the history is called the last

flip on register X (or register Y [k]).

Note that the initial condition ensures that all histories of program S are well-formed.

By definition, the first write operation on a register is a flip on that register. Therefore,

the last flip on every register is well-defined and unique.
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We later need a rank function to count the number of flips performed on register

ORDi[k], for any process Pi and index k in array ORDi.

Definition 7.3.4. Let Pi be a process and k, 1 ≤ k ≤ N , be an integer. We define

function on states

FlipCount(ORDi[k ]) = |{op | ¬crashedi ∧ Flip(op, ORDi[k ])}| .

We next focus on properties of function FlipCount . Hereafter, we assume that

Pi is a non-crashed process and k, 1 ≤ k ≤ N , is an integer. (1) Since events

are appended, but never removed from the history, the number of flips on register

ORDi[k] never decreases. (2) By Lemma 7.3.3, a flip operation on register ORDi[k]

can occur only when process Pi is at location `23. Thereafter, Pi eventually reaches

location `1. Thus the number of flips on register ORDi[k] increases by at most one

before process Pi reaches location `1. For the same reason, (3) the number of flips

on register ORDi[k] remains the same unless process Pi reaches location `23 and the

value of ORDi[k] differs from change(ord i , γ(ai), i)[k ].

Lemma 7.3.19. Let Pi be a non-crashed process and k, 1 ≤ k ≤ N , be an integer.

For every computation sequence of program S, the following properties eventually

hold:

a) 2(f = FlipCount(ORDi[k ]) •2FlipCount(ORDi[k ]) ≥ f ) ,

b) 2(f = FlipCount(ORDi[k ]) •3( loci = `1

∧ FlipCount(ORDj[k ]) ≤ f + 1)) , and

c) 2(f = FlipCount(ORDi[k ]) • FlipCount(ORDi[k ]) = f

W ( change(ord i , γ(ai), i)[k ] 6= ORDi[k ]

∧ loci = `23)) .

We now determine an upper bound of the number of flips performed on any register

ORDj[k] before non-crashed process Pj reads the values recorded in registers TRYi,
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Xi, and ORDi, or Pj determines that process Pi is not active. We assume that the

values in registers TRYi, Xi, and ORDi remain the same. Otherwise, process Pi enters

and leaves its critical section and there is nothing to prove.

Lemma 7.3.20. Let Pi be a (possibly crashed) process, Pj be a non-crashed process,

and c and k, 1 ≤ c, k ≤ N , be integers. For every computation sequence of program

S, the following properties eventually hold:

a) 2(op = LastFlip(TRYi) •2(op = LastFlip(TRYi) ∧ Complete(op))

→ FlipCount(ORDj[k ]) = f •3( locj = `8.8 ∧ FlipCount(ORDj[k ]) ≤ f + 1

∧2tj[i] = TRYi)) ,

b) 2(op = LastFlip(Xi) •2(op = LastFlip(Xi) ∧ Complete(op))

→ FlipCount(ORDj[k ]) = f •3( locj = `8.8 ∧ FlipCount(ORDj[k ]) ≤ f + 1

∧2xj[i] = Xi)) , and

c) 2(op = LastFlip(ORDi[c]) •2(op = LastFlip(ORDi[c]) ∧ Complete(op))

→ FlipCount(ORDj[k ]) = f •3( locj = `8.8 ∧ FlipCount(ORDj[k ]) ≤ f + 1

∧2( locj ∈ [`8.5, `8.7] ∨ ¬aj[i]

∨ ord j[i][c] = ORDi[c]))) .

As intuitively described in Chapter 4, process Pi is active if the value recorded ei-

ther in register TRYi or in register Xi equals true. In addition, the last write operation

modifying the value recorded in TRYi or Xi has to be complete.

Definition 7.3.5. Let Pi be a (possibly crashed) process. We define

Active(i) ≡ (Complete(LastFlip(TRYi)) ∧TRYi = true)

∨ (Complete(LastFlip(Xi)) ∧Xi = true) .

We say that Pi is active in column k of bit-matrix ord j, for some non-crashed process

Pj, if Pi is active and aj[i] ∧ 1 ≤ k ≤ |γ(aj)| ∧ i /∈ ρ(choice(ord j , aj ), k) holds.
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Intuitively, a process is active in a column if it is active and not selected in an earlier

column.

For every non-crashed process Pi, the following properties hold: (1) If Pi is active,

then Pi is at a location in [`1, `21]. (2) If Pi is active, then the last flip on register Xi

is complete and the value recorded in Xi equals true. (3) If Pi is active, then the last

write operation on register ORDi is complete.

Lemma 7.3.21. Let Pi be a non-crashed process. For every computation sequence of

program S, the following properties eventually hold:

a) 2(Active(i) → loci ∈ [`1, `21]) ,

b) 2(Active(i) → (Complete(LastFlip(Xi)) ∧Xi = true)) , and

c) 2(Active(i) → Complete(LastWrt(ORDi))) .

If non-crashed process Pi is active at a location in [`1, `18], then either Pi remains

active at a location in [`1, `18], or Pi eventually enters its critical section.

Lemma 7.3.22. Let Pi be a non-crashed process. For every computation sequence of

program S, the following property eventually holds:

2((Active(i) ∧ loci ∈ [`1, `18])

→ (2(Active(i) ∧ loci ∈ [`1, `18]) ∨3InCSi)) .

In our proof, we need to identify the states in which process Pi is changing the

value recorded in register ORDi[k]. A new value (different from the previously written

value) can be written to ORDi[k] only if process Pi is not crashed. In addition, any

write operation on ORDi is performed only when Pi is not active. Finally, the new

value of ORDi[k] differs from the previously written value only if it is not the case

that ord i[i][k] = ORDi[k] = change(ord i , γ(ai), i)[k ].

Definition 7.3.6. Let Pi be a process and k, 1 ≤ k ≤ N , be an integer. We define
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Flipping(ORDi[k ]) ≡ ¬crashedi ∧ ¬Active(i)

∧ ( ord i[i][k] 6= ORDi[k]

∨ORDi[k] 6= change(ord i , γ(ai), i)[k ]) .

We say that register ORDi[k] is flipping if Flipping(ORDi[k ]) holds.

If register ORDi[k] is not flipping, then the last flip operation on that register is

complete. In addition, the value recorded in ORDi[k] remains unchanged. Conse-

quently, if ORDi[k] never flips, eventually every non-crashed process records the value

of ORDi[k] in ord j[i][k] or aj[i] is always false.

Lemma 7.3.23. Let Pi be a (possibly crashed) process, Pj be a non-crashed process,

and k, 1 ≤ k ≤ N , be an integer. For every computation sequence of program S, the

following properties eventually hold:

a) 2(¬Flipping(ORDi[k ]) → Complete(LastFlip(ORDi[k ]))) ,

b) 2(y = ORDi[k] • (y = ORDi[k]W Flipping(ORDi[k ]))) , and

c) 2(2¬Flipping(ORDi[k ]) → 3(2¬aj [i ] ∨2ord j [i ][c] = ORDi[c])) .

We next define three predicates characterizing sets of registers ORDi[k] that are

not flipping. Intuitively, column k of bit-matrix ORD is frozen if no register ORDz[k]

is flipping, for any process Pz. Columns below column k of bit-matrix ORD are frozen

if every column preceding column k is frozen. Finally, registers below register ORDi[k]

are frozen (with respect to active process Pm) if columns below column k are frozen

and no register ORDz[k] is flipping such that the distance of process Pz from Pm is

less than the distance of process Pi from Pm. Recall that the distance of process Pm

from Pi is defined as dist(Pm,Pi) = (i − m) mod N . Later we will show that the

number of register ORDi[k]’s flips is bounded provided that registers below ORDi[k]

are frozen.
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Definition 7.3.7. Let Pm and Pi be processes and k, 1 ≤ k ≤ N , and c, 1 ≤ c ≤
N + 1, be integers. We define

a) FrozenColumn(k) ≡ ¬Flipping(ORDz[k ]) ,

b) FrozenColsBelow(c) ≡ 1 ≤ k < c → FrozenColumn(k) , and

c) FrozenBelow(ORDi[k ],Pm) ≡ Active(m) ∧ FrozenColsBelow(k)

∧ (dist(Pm,Pz) < dist(Pm,Pi)

→ ¬Flipping(ORDz[k ])) .

We say that column k is frozen if FrozenColumn(k) holds. We say that columns below

column k are frozen if FrozenColsBelow(k) holds. We say that registers below register

ORDi[k] are frozen (with respect to process Pm) if FrozenBelow(ORDi[k ],Pm) holds.

The next lemma, in essence, claims that the value change(ord j , γ(aj ), i)[k ] re-

mains unchanged provided some values in column k of bit-matrix ord j preceding

row i are unchanged. More precisely, for any process Pi and column k, the follow-

ing property holds: If (1) process Pj is outside locations [`8.5, `8.7]; (2) the value

of change(ord j , γ(aj ), i)[k ] equals T ; (3) process Pm (distinct from Pi) is always

active in column k of bit-matrix ord j and the value recorded in ord j[m][k] equals

ORDm[k]; (4) every process Pz with the distance from Pm less than the distance of

process Pi from Pm is either (4a) always active in column k of ord j and the value

recorded in ord j[z][k] equals ORDz[k], or (4b) always if process Pj is outside locations

[`8.5, `8.7], then Pz is inactive in column k of ord j or the value recorded in ord j[z][k]

equals change(ord j , γ(aj ), z )[k ]; then the value of change(ord j , γ(aj ), i)[k ] remains

unchanged whenever Pj is outside locations [`8.5, `8.7].

Lemma 7.3.24. Let Pi and Pm be distinct (possibly crashed) processes, Pj be a non-

crashed process, and k, 1 ≤ k ≤ N , be an integer. For every computation sequence of

program S, the following property eventually holds:
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2(( locj /∈ [`8.5, `8.7] ∧ change(ord j , γ(aj ), i)[k ] = T

∧2(locj /∈ [`8.5, `8.7] → (k ≤ |γ(aj)| ∧m /∈ ρ(choice(ord j , γ(aj )), k))

∧ ∀Pz · dist(Pm,Pz) < dist(Pm,Pi) →
( 2( aj[z] ∧ ord j[z][k] = ORDz[k]

∧ (locj /∈ [`8.5, `8.7] → z /∈ ρ(choice(ord j , γ(aj )), k)))

∨2( locj ∈ [`8.5, `8.7] ∨ ¬aj[z]

∨ ord j[z][k] = change(ord j , γ(aj ), z )[k ]

∨ z ∈ ρ(choice(ord j , γ(aj )), k))))

→ 2(locj /∈ [`8.5, `8.7] → change(ord j , γ(aj ), i)[k ] = T )) .

Proof. Let Pi and Pm be distinct (possibly crashed) processes, Pj be a non-crashed

process, and k, 1 ≤ k ≤ N , be an integer. Consider an arbitrary computation

sequence σ of program S such that (1) locj /∈ [`8.5, `8.7], (2) change(ord j , γ(aj ), i)[k ] =

Prior(ord j , γ(aj ) \ ρ(choice(ord j , γ(aj )), k), i , k) = T holds, (3) 2(locj /∈ [`8.5, `8.7] →
(k ≤ |γ(aj)| ∧m /∈ ρ(choice(ord j , γ(aj )), k))) holds, and (4) for every process Pz such

that dist(Pm,Pz) < dist(Pm,Pi) either (4a) 2(aj[z] ∧ ord j[z][k] = ORDz[k] ∧ (locj /∈
[`8.5, `8.7] → z /∈ ρ(choice(ord j , γ(aj )), k))) holds or (4b) 2(locj ∈ [`8.5, `8.7]∨¬aj[z]∨
ord j[z][k] = change(ord j , γ(aj ), z )[k ] ∨ z ∈ ρ(choice(ord j , γ(aj )), k)) holds.

Let Z denote the set {z | dist(Pm,Pz) < dist(Pm,Pi)∧2((locj /∈ [`8.5, `8.7] → (k ≤
|γ(aj)|∧z /∈ ρ(choice(ord j , γ(aj )), k)))∧aj [z ]∧ord j [z ][k ] = ORDz[k ]} in σ. Obviously,

m ∈ Z holds. Let σ(n), n ≥ 0, be any suffix of computation sequence σ such that locj /∈
[`8.5, `8.7] holds. We show that Prior(ord j , γ(aj ) \ ρ(choice(ord j , γ(aj )), k), i , k) =

Prior(ord j ,Z \ ρ(choice(ord j , γ(aj )), k), i , k) holds in σ(n). Let Pz be a process such

that z /∈ Z holds. We distinguish two cases:

a) dist(Pm,Pz) ≥ dist(Pm,Pi) holds.

Because m ∈ Z holds in σ(n), it follows that process Pm is active in column k of

bit-matrix ord j. Since Pi is distinct from Pm and dist(Pm,Pz) ≥ dist(Pm,Pi), it
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follows that z 6= Prev(γ(aj ) \ ρ(choice(ord j , γ(aj )), k), i) holds in σ(n). And be-

cause of Lemma 7.3.18(c)(d), Prior(ord j , γ(aj )\ρ(choice(ord j , γ(aj )), k), i , k) =

Prior(ord j , γ(aj ) \ {z} \ ρ(choice(ord j , γ(aj )), k), i , k) holds in σ(n).

b) dist(Pm,Pz) < dist(Pm,Pi) holds.

Because z /∈ Z, property (4b) holds for Pz in σ(n). Since locj /∈ [`8.5, `8.7] holds

in σ(n), we distinguish the following three cases:

b1) ¬aj[z] holds in σ(n).

It follows that z /∈ γ(aj) holds in σ(n). Consequently, by definition,

Prior(ord j , γ(aj )\ρ(choice(ord j , γ(aj )), k), i , k) = Prior(ord j , γ(aj )\{z}\
ρ(choice(ord j , γ(aj )), k), i , k) holds in σ(n).

b2) ord j[z][k] = change(ord j , γ(aj ), z )[k ] holds in σ(n).

Prior(ord j , γ(aj )\ρ(choice(ord j , γ(aj )), k), i , k) = Prior(ord j , γ(aj )\{z}\
ρ(choice(ord j , γ(aj )), k), i , k) holds in σ(n) because of Lemma 7.3.18(c)(d).

b3) z ∈ ρ(choice(ord j , γ(aj )), k))) holds in σ(n).

Thus Prior(ord j , γ(aj )\ρ(choice(ord j , γ(aj )), k), i , k) = Prior(ord j , γ(aj )\
{z} \ ρ(choice(ord j , γ(aj )), k), i , k) holds in σ(n).

Because of properties (a), (b1), (b2), and (b3), it follows that Prior(ord j , γ(aj ) \
ρ(choice(ord j , γ(aj )), k), i , k) = Prior(ord j ,Z , i , k) holds in σ(n). Hence, we conclude

that change(ord j , γ(aj ), i)[k ] = T holds σ(n).

Below we need the notion of an array (sequence) prefix.

Definition 7.3.8. Let r be an array (sequence) of length |r| and k, 1 ≤ k ≤ |r|+1, be

an integer. We define the kth prefix of r, denoted by µ(r, k), as the array (sequence)

s of length k − 1 such that s[i] = r[i] holds, for every index i, 1 ≤ i < k.

The following lemma intuitively expresses that the process priorities assigned in

the first k−1 columns of bit-matrix ord j remain unchanged if values in those columns
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remain unchanged. More precisely, for any non-crashed process Pj and column k, the

following property holds: If (1) process Pj is outside locations [`8.5, `8.7]; (2) the value

of the kth prefix of choice(ord j , γ(aj )) equals T ; and, for every process Pi, (3a) Pi is

always active and the kth prefix of ord j[i] equals the kth prefix of the value recorded

in register ORDi, or (3b) always Pi is inactive or the kth prefix of ord j[i] equals the kth

prefix of change(ord j , γ(aj ), i); then the value of the kth prefix of choice(ord j , γ(aj ))

remains unchanged when Pj is outside locations [`8.5, `8.7].

Lemma 7.3.25. Let Pj be a non-crashed process and k, 1 ≤ k ≤ N +1, be an integer.

For every computation sequence of program S, the following property eventually holds:

2(( locj /∈ [`8.5, `8.7] ∧ k ≤ |γ(aj)|+ 1 ∧ µ(choice(ord j , γ(aj )), k) = T

∧ ∀Pi · 2(aj[i] ∧ µ(ord j[i], k) = µ(ORDi, k))

∨2( locj ∈ [`8.5, `8.7] ∨ ¬aj[i]

∨ µ(ord j[i], k) = µ(change(ord j , γ(aj ), i), k)))

→ 2(locj /∈ [`8.5, `8.7] → (k ≤ |γ(aj)|+ 1

∧ µ(choice(ord j , γ(aj )), k) = T ))) .

Proof. Let Pj be a non-crashed process and k, 1 ≤ k ≤ N + 1, be an integer. We

prove the property in the lemma by induction on k.

i) Assume k = 1.

By definition, k ≤ |γ(aj)| + 1 and µ(choice(ord j , γ(aj )), k) = 〈〉 hold, and the

property is trivially true.

ii) Assume that the property in the lemma holds for k ≥ 1. We next show that

the property holds for k + 1 ≤ N + 1.

Consider an arbitrary computation sequence σ of program S such that (1) locj /∈
[`8.5, `8.7] holds, (2) k + 1 ≤ |γ(aj)|+ 1 holds, (3) µ(choice(ord j , γ(aj )), k + 1) =

T holds, and, for every process Pi, either (4a) 2(aj[i] ∧ µ(ord j[i], k + 1) =
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µ(ORDi, k + 1)) holds, or (4b) 2(locj ∈ [`8.5, `8.7] ∨ ¬aj[i] ∨ µ(ord j[i], k + 1) =

µ(change(ord j , γ(aj ), i), k + 1)) holds. In addition, assume that the inductive

hypothesis (5) 2(locj /∈ [`8.5, `8.7] → (k ≤ |γ(aj)|+1∧µ(choice(ord j , γ(aj )), k) =

µ(T , k))) holds in σ.

Let Z denote the set {i | 2(aj[i]∧µ(ord j[i], k+1) = µ(ORDi, k+1))}. Because

of properties (1), (4b), (5), and Lemma 7.3.17(a)(b), it follows that T [k + 1] ∈
Z and (6) |Z| ≥ k + 1 always holds in σ. Let σ(n), n ≥ 0, be any suffix

of computation sequence σ such that locj /∈ [`8.5, `8.7] holds. We show that

Select(ord j , γ(aj )\ρ(T , k +1), k +1) = Select(ord j ,Z \ρ(T , k +1), k +1) holds

in σ(n). Let Pi be a process such that i /∈ Z holds. Then property (4b) holds

for Pi. Since locj /∈ [`8.5, `8.7] holds in σ(n), we distinguish two cases:

a) ¬aj[i] holds in σ(n).

It follows that i /∈ γ(aj) holds in σ(n). Consequently, Select(ord j , γ(aj ) \
ρ(T , k + 1), k + 1) = Select(ord j , γ(aj ) \ {i} \ ρ(T , k + 1), k + 1) holds in

σ(n).

b) µ(ord j[i], k) = µ(change(ord j , γ(aj ), i), k) holds in σ(n).

Select(ord j , γ(aj ) \ ρ(T , k + 1), k + 1) = Select(ord j , γ(aj ) \ {i} \ ρ(T , k +

1), k + 1) holds in σ(n) because of Lemma 7.3.17(a).

Because of properties (a) and (b), it follows that Select(ord j , γ(aj ) \ ρ(T , k +

1), k+1) = Select(ord j ,Z \ρ(T , k+1), k+1) holds in σ(n). Hence, because of (6)

and the inductive hypothesis, k+1 ≤ |γ(aj)|+1∧µ(choice(ord j , γ(aj )), k +1) =

T holds in σ(n).

We next show that if registers are frozen below register ORDm[k] with respect to

process Pm, then within one flip on register ORDj[c] the values in columns preceding

column k of bit-matrix ord j remain unchanged. More precisely, for every process Pi,

either (1) Pi is always active and the kth prefix of ord j[i] equals the kth prefix of the
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value recorded in register ORDi, or (2) always Pi is at a location in [`8.5, `8.7] or Pi is

inactive or the kth prefix of ord j[i] equals the kth prefix of change(ord j , γ(aj ), i).

Lemma 7.3.26. Let Pi and Pm be (possibly crashed) processes, Pj be a non-crashed

process, c, 1 ≤ c ≤ N , and k, 1 ≤ k ≤ N + 1 be integers. For every computation

sequence of program S, the following property eventually holds:

2((2Active(m) ∧2FrozenColsBelow(k) ∧ FlipCount(ORDj[c]) = f )

→ 3( locj = `8.8 ∧ FlipCount(ORDj[c]) ≤ f + 1

∧ ( 2(Active(i) ∧ aj [i ] ∧ ord j [i ] = ORDi)

∨2(¬Active(i) ∧ ¬aj [i ])

∨2(locj /∈ [`8.5, `8.7]

→ ( k ≤ |γ(aj)|+ 1 ∧m /∈ ρ(choice(ord j , γ(aj )), k − 1)

∧ µ(ORDi, k) = µ(change(ord j , γ(aj ), i), k)))

∨2( locj ∈ [`8.5, `8.7] ∨ k > |γ(aj)|+ 1

∨m ∈ ρ(choice(ord j , γ(aj )), k − 1))))) .

Proof. Let Pi and Pm be (possibly crashed) processes, Pj be a non-crashed process,

c, 1 ≤ c ≤ N , and k, 1 ≤ k ≤ N +1 be integers. We prove the property in the lemma

by induction on k.

i) Assume k = 1.

By definition, µ(ORDi, k) = 〈〉 = µ(change(ord j , γ(aj ), i), k) holds and the

property is trivially true.

ii) Assume the property in the lemma holds for k ≥ 1. We show that the property

holds for k + 1 ≤ N + 1.

We prove this case by induction on the distance of processes Pm and Pi.

a) Assume dist(Pm,Pi) = 0; that is, Pi = Pm.

By (1), (2) and Lemma 7.3.20(a)(b)(c), there exists suffix σ(n), n ≥ 0, of



76

computation sequence σ such that 2(Active(i) ∧ aj [i ] ∧ ord j [i ] = ORDi)

holds.

b) Assume the property holds for every process Pz, dist(Pm,Pz) = d, d ≥ 0.

Let Pi be the process such that dist(Pm,Pi) = d + 1 < N . We show that

the property holds for Pi.

Consider an arbitrary computation sequence σ of program S such that the

properties in Lemmata 7.3.5, 7.3.21, and 7.3.20 always hold, 2Active(i)∨
2¬Active(i) ∨ 2(3Active(i) ∧ 3¬Active(i)) holds, and (1) 2Active(m)

holds, (2) 2FrozenColsBelow(k+1) holds, and (3) FlipCount(ORDj[c]) = f

holds.

b1) Always Active(i) holds in σ.

By (2) and Lemma 7.3.20(a)(b)(c), there exists suffix σ(n), n ≥ 0,

of computation sequence σ such that 2(Active(i) ∧ aj [i ] ∧ ord j [i ] =

ORDi) holds.

b2) Always ¬Active(i) holds in σ.

By Lemma 7.3.20(a)(b), there exists suffix σ(n), n ≥ 0, of computation

sequence σ such that 2(¬Active(i) ∧ ¬aj [i ]) holds.

b3) Always 3Active(i) ∧3¬Active(i) holds in σ.

By the inductive hypothesis in (ii), for every non-crashed process Pj′

and every process Pi′ , there exists suffix σ(n), n ≥ 0, of computation

sequence σ such that (4) locj′ = `8.8 ∧ FlipCount(ORDj′ [c]) ≤ f + 1

holds, and either (5a) 2(Active(i ′) ∧ aj ′ [i
′] ∧ ord j ′ [i

′] = ORDi′) holds

or (5b) 2(¬Active(i ′) ∧ ¬aj ′ [i
′]) holds or (5c) 2(locj /∈ [`8.5, `8.7] →

(k ≤ |γ(aj′)|+ 1∧m /∈ ρ(choice(ord j ′ , γ(aj ′)), k − 1)∧ µ(ORDi′ , k) =

µ(change(ord j ′ , γ(aj ′), i
′), k))) holds or (5d) 2(locj ∈ [`8.5, `8.7] ∨ k >

|γ(aj′)|+1∨m ∈ ρ(choice(ord j ′ , γ(aj ′)), k − 1)) holds. If (5d) holds in

σ(n), then (b) is trivially true. Therefore, assume (5d) does not hold
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in σ(n).

Because of (2) and Lemmata 7.3.20(c) and 7.3.23(b), it follows that

(6) 2(locj′ ∈ [`8.5, `8.7]∨¬aj′ [i
′]∨µ(ord j′ [i

′], k +1) = µ(ORDi′ , k +1))

holds in σ(n). Consequently, either (7a) 2(aj′ [i
′] ∧ µ(ord j′ [i

′], k) =

µ(ORDi′ , k)) or (7b) 2(locj′ ∈ [`8.5, `8.7] ∨ ¬aj′ [i
′] ∨ µ(ord j′ [i

′], k) =

µ(ORDi′ , k) = µ(change(ord j ′ , γ(aj ′), i
′), k)) holds in σ(n). Moreover,

(8) 2(aj′ [m] ∧ ord j′ [m] = ORDm) holds in σ(n).

Consider the case that k > |γ(aj′)| + 1 holds in σ(n). Because of

(8), there exists integer k′, 1 ≤ k′ ≤ |γ(aj′)| + 1, such that m ∈
ρ(choice(ord j ′ , γ(aj ′)), k

′) holds in σ(n). By Lemma 7.3.25, 2(locj′ /∈
[`8.5, `8.7] → (k′ ≤ |γ(aj′) + 1| ∧m ∈ ρ(choice(ord j ′ , γ(aj ′)), k

′))) holds

in σ(n). Consequently, (5d) holds in σ(n), which is a contradiction.

Therefore, assume that k ≤ |γ(aj′)| + 1 holds in σ(n). It follows

by Lemma 7.3.25 that (9) T = µ(choice(ord j ′ , γ(aj ′)), k) • 2(locj ′ /∈
[`8.5, `8.7] → (k ≤ |γ(aj ′)+1|∧T = µ(choice(ord j ′ , γ(aj ′)), k))) holds in

σ(n). If m ∈ ρ(T, k) holds in σ(n), then (b) is trivially true. Therefore,

assume (10) m /∈ ρ(T, k) holds in σ(n).

By the inductive hypothesis in (b), for every process Pz, dist(Pm,Pz) <

dist(Pm,Pi), either (11a) 2(Active(z )∧aj ′ [z ]∧ord j ′ [z ] = ORDz) holds

or (11b) 2(¬Active(z ) ∧ ¬aj ′ [z ]) holds or (11c) 2(locj′ /∈ [`8.5, `8.7] →
(k+1 ≤ |γ(aj′)|+1∧m ∈ ρ(choice(ord j ′ , γ(aj ′)), k)∧µ(ORDz, k+1) =

µ(change(ord j ′ , γ(aj ′), z ), k +1))) or (11d) 2(locj′ ∈ [`8.5, `8.7]∨k+1 >

|γ(aj′)|+1∨m ∈ ρ(choice(ord j ′ , γ(aj ′)), k)) holds in σ(n). If (11d) holds

in σ(n), then again (b) is trivially true. Therefore, assume (11d) does

not hold in σ(n).

Because of (6) and (9), either (12a) 2(aj′ [z]∧ord j′ [z][k] = ORDz[k]∧
(locj′ /∈ [`8.5, `8.7] → z /∈ ρ(choice(ord j ′ , γ(aj ′)), k))) holds or (12b)
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2(locj′ /∈ [`8.5, `8.7]∨¬aj′ [z]∨ ord j′ [z][k] = change(ord j ′ , γ(aj ′), z )[k ]∨
z ∈ ρ(choice(ord j ′ , γ(aj ′)), k)) holds in σ(n). Because of (9) and (10),

2(locj′ /∈ [`8.5, `8.7] → (k ≤ |γ(aj′)| ∧m /∈ ρ(choice(ord j ′ , γ(aj ′)), k)))

holds in σ(n). Consequently, because of Lemma 7.3.24, it follows

that (13) y = change(ord j ′ , γ(aj ′), i)[k ] • 2(locj ′ /∈ [`8.5, `8.7] → y =

change(ord j ′ , γ(aj ′), i)[k ]) holds in σ(n).

Because of (b3), process Pi is not crashed. Let A denote set {i |
2Active(i)} in σ. Because of Lemma 7.3.20(a)(b)(c), eventually al-

ways bit-matrix ord j is an extension of bit-matrix ord i with respect

to A and ord i is an extension of ord j with respect to A. Hence, be-

cause of Lemma 7.3.17(a)(c), eventually 2((loci /∈ [`8.5, `8.7] ∧ locj /∈
[`8.5, `8.7]) → µ(choice(ord i , γ(ai)), k) = µ(choice(ord j , γ(aj )), k)) is

satisfied in σ. Then, because of Lemma 7.3.18(b)(c), eventually (14)

2((loci /∈ [`8.5, `8.7] ∧ locj /∈ [`8.5, `8.7]) → µ(change(ord i , γ(ai), i), k +

1) = µ(change(ord j , γ(aj ), i), k + 1) holds in σ.

Because of (b3), property (5c) holds for Pi. Because of (2) and (13),

2(loci /∈ [`8.5, `8.7] → µ(ORDi, k+1) = µ(change(ord i , γ(ai), i), k+1))

holds in σ. Consequently, because of (9), (10) and (14), 2(locj /∈
[`8.5, `8.7] → (k + 1 ≤ |γ(aj)| + 1 ∧ m /∈ ρ(choice(ord j , γ(aj )), k) ∧
µ(ORDi, k + 1) = µ(change(ord j , γ(aj ), i), k + 1))) holds in σ(n).

In the following lemma, we claim that if registers are frozen below register ORDj[k]

with respect to process Pm, then within one flip on register ORDj[c] the values below

ORDj[k] of bit-matrix ord j remain unchanged. More precisely, for every process Pi,

either (1) process Pm remains inactive in column k of ord j, or (2) for every process Pi

such that the distance of Pi from Pm is less than the distance of Pj from Pm, (2a) Pi

is always active in column k of ord j and the kth prefix of ord j[i] equals the kth prefix

of the value recorded in register ORDi, or (2b) always Pi is inactive in column k of
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ord j or the kth prefix of ord j[i] equals the kth prefix of change(ord j , γ(aj ), i) or Pj is

at a location in [`8.5, `8.7].

Lemma 7.3.27. Let Pj be a non-crashed process, Pm be a (possibly crashed) process,

and k, 1 ≤ k ≤ N , be an integer. For every computation sequence of program S, the

following property eventually holds:

2((2FrozenBelow(ORDj[k ],Pm) ∧ FlipCount(ORDj[k ]) = f )

→ 3( locj = `8.8 ∧ FlipCount(ORDj[k ]) ≤ f + 1

∧ (2(locj /∈ [`8.5, `8.7] → (k > |γ(aj)| ∨m ∈ ρ(choice(ord j , γ(aj )), k)))

∨ dist(Pm,Pi) < dist(Pm,Pj)

→ ( 2( aj[i] ∧ µ(ord j[i], k + 1) = µ(ORDi, k + 1)

∧ (locj /∈ [`8.5, `8.7] → i /∈ ρ(choice(ord j , γ(aj )), k)))

∨2( locj ∈ [`8.5, `8.7] ∨ ¬aj[i]

∨ µ(ord j[i], k + 1) = µ(change(ord j , γ(aj ), i), k + 1)

∨ i ∈ ρ(choice(ord j , γ(aj )), k))))) .

Proof. The proof is similar to the proof of Lemma 7.3.26, and it follows from Lemmata

7.3.17, 7.3.18, 7.3.19, 7.3.20, 7.3.25, and 7.3.26.

As a consequence of Lemmata 7.3.19, 7.3.26, and 7.3.27, if registers below register

ORDi[k] remain frozen with respect to process Pm, then within two flips on register

ORDi[k] the value recorded in ORDi[k] remains unchanged and thus register ORDi[k]

becomes frozen.

Corollary 7.3.1. Let Pi and Pm be (possibly crashed) processes and k, 1 ≤ k ≤ N ,

be an integer. If columns of bit-matrix ORD below column k are always frozen and

process Pm is always active in column k, then the number of flips that occur on register

ORDi[k] in the states in which registers below ORDi[k] are frozen is at most 2dist(Pm,Pi).
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7.3.6 Highest Priority Non-crashed Processes

Consider some program S consisting of N concurrent processes P1, . . . ,PN . Below,

S i denotes the program obtained from S by removing process Pi from program S.

Process Pi is said to be enabled in a state if at least one of Pi’s transitions is enabled

in that state. This is denoted by predicate Enabled i.

Lemma 7.3.28 (Weak-Until Eventuality). Let (W,≤) be a well-founded structure.

Let 0 denote a minimal element in W . Let δ : W → (States → Boolean) be a pred-

icate, p, q, and r be state predicates, and ϕ(i) be a state predicate parameterized by

process Pi. Then, for program S consisting of processes P1, . . .PN , the following proof

rule is sound:

2(r → ∃w · δ(w)) (1)

2(δ(0) → (p ∨ q)) (2)

2(δ(w) → e(∃v ≤ w · δ(v) ∨ q)) (3)

2((δ(w) ∧ w > 0) → 3(∃v < w · δ(v) ∨ ∃i · ϕ(i) ∨ q)) (4)

For every process Pi,

2((ϕ(i) ∧ δ(w) ∧ w > 0) → (¬Enabled i ∧ e(∃v < w · δ(v) ∨ ϕ(i) ∨ q)) (5)

S i ` 2((ϕ(i) ∧ δ(w) ∧ w > 0) → 3(pW (∃v < w · δ(v) ∨ q))) (6)

2(r → 3(pW q)) .

Proof. Consider any computation sequence s0 −→ s1 −→ s2 −→ . . . of program S.

Assume r holds in state si. If q holds is some state sj, j ≥ i, then 3(pW q) is trivially

satisfied. Therefore, assume ¬q holds in every state sj, j ≥ i. Because of (1), there

exists w ∈ W such that δ(w) holds in si. Since (W,≤) is a well-founded structure

and because of (3), there exists state sk, k ≥ i, such that δ(w) = v continuously

holds afterwards. If v = 0, then from that point onwards p holds because of (2).

Otherwise, v > 0 holds and, hence, there exists some Pi such that ϕ(i) holds in some

state sm, m ≥ k, because of (4). Because of (3), ϕ(i) holds in every state sn, n ≥ m.
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Clause (5) and ϕ(i) then ensure that Pi is disabled in every state sn, n ≥ m. Thus,

computation sequence sm −→ sm+1 −→ sm+2 −→ . . . is a computation sequence of

program S i. Because of clause (6), 3(pW (∃v < w · δ(v)∨ q)) holds for S i and hence

for S. Consequently, in this sequence 32p holds. Therefore, 3(pW q) is satisfied.

Next we formally introduce the notion of the highest priority non-crashed process.

Intuitively, the highest priority non-crashed process (locally in process Pi) is the first

non-crashed process selected by function choice(ord i , γ(ai)).

Definition 7.3.9. Let Pi and Pm be non-crashed processes. We define

HP i(m) ≡ ai[m]

∧ ((loci /∈ [`8.5, `8.7] ∧ j ∈ π(choice(ord i , γ(ai)),m)) → crashedj ) .

We say process Pm is the highest priority non-crashed process (locally in Pi) if predi-

cate HP i(m) holds.

The following lemma claims that every non-crashed process Pm eventually becomes

the highest priority non-crashed process (locally in Pi) unless Pm enters its critical

section.

Lemma 7.3.29. Let Pi and Pm be non-crashed processes. For all computation se-

quences of program S, the following property eventually holds:

2((locm ∈ [`1, `18] ∧ Active(Pm)) → 3(HP i(Pm)W InCSm)) .

Proof. We use the proof rule in Lemma 7.3.28 to prove the property in this lemma. In

the proof rule, we use the following substitutions: r ≡ ¬crashedi∧¬crashedm∧ locm ∈
[`1, `18]∧Active(Pm), p ≡ HP i(Pm), and q ≡ InCSm. We assume that S is the SLEX

program in Figures 4.1 and 4.2 consisting of n = N processes. The proof rule in

Lemma 7.3.28 involves two state predicates: the ranking predicate δ(w), for w ∈ W ,

W being a well-founded structure, and the disabling predicate ϕ(i) parameterized by

process Pi. Next we describe those two predicates.
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i) Ranking predicate δ.

Let W = {0, . . . , 2N} with the usual ≤ relation be the well-founded structure

in Lemma 7.3.28. We define predicate δ(w), for w ∈ W , as follows: If InCSm

holds in a state, then δ(0) holds in that state. Otherwise, let Pj be any process,

k = N−n+1 be the integer identifying the first non-frozen column in bit-matrix

ORD, and w be the number of flips that have occurred on register ORDj[k] in

the states when registers below ORDj[k] were frozen with respect to process

Pm. By Corollary 7.3.1, there are at most 2dist(Pm,Pj) flips on every register

ORDj[k] before the value of ORDj[k] remains unchanged. Consequently, there

are at most
∑N

j=1 2dist(Pm,Pj) = 2N − 1 flips in column k before column k is

frozen. Let f equals 2N less the number of flips that have occurred in column k.

Predicate δ(w) holds only if w = f holds. In addition, predicate δ incorporates

the invariant that is necessary to establish that registers below ORDm[k] are

frozen with respect to process Pm.

ii) Disabling predicate ϕ.

Predicate ϕ(i) holds, for process Pi, if Pi is selected in column k = N − n + 1

of bit-matrix ord i and it is crashed.

7.3.7 Highest Priority Non-Crashed Process Enters Critical Section

In this section, we show that the highest priority non-crashed process eventually

enters its critical section, provided less than ` processes are crashed in the critical

section. We first show that if columns up to column k are frozen, then eventually all

non-crashed processes always select the same processes in the frozen columns.

Lemma 7.3.30. Let Pi and Pj be non-crashed processes, Pm be a possibly crashed

process, and k, 1 ≤ k ≤ N + 1, be an integer. For every computation sequence of

program S, the following property eventually holds:
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2((2Active(m) ∧2FrozenColsBelow(k))

→ 32((loci /∈ [`8.5, `8.7] ∧ locj /∈ [`8.5, `8.7])

→ (k ≤ |γ(ai)|+ 1 ∧ k ≤ |γ(aj)|+ 1

∧ µ(choice(ord i , γ(ai)), k) = µ(choice(ord j , γ(aj )), k)))) .

Proof. The property directly follows from Lemmata 7.3.25 and 7.3.26.

As a consequence of the property in the above lemma, if a process is recognized

by some non-crashed process as always the highest priority non-crashed process, then

that process is eventually recognized by all non-crashed processes as always the high-

est priority non-crashed process.

Corollary 7.3.2. Let Pi, Pj, and Pm be non-crashed processes. For every computa-

tion sequence of program S, the following property eventually holds:

2(2HP i(m) → 32HP j(m)) .

Next we show that if some register VECm remains unchanged, then eventually

every non-crashed process Pi determines (locally) the same values of set Ei(m).

Lemma 7.3.31. Let Pi and Pj be non-crashed processes and Pm be a (possibly

crashed) process. For all computation sequences of program S, the following prop-

erty eventually holds:

2(w = LastWrt(VECm) •3(Ei(m) = Ej (m)W w 6= LastWrt(VECm))) .

Proof. The property follows from Lemma 7.3.16.

If Pm is the highest priority non-crashed process, then every process Pj with

a higher priority than Pm is crashed. If Pm never enters its critical section, then

eventually every process with a higher priority than Pm is recorded in program variable

pi, for every non-crashed process Pi. Since pi = π(choice(ord i , γ(ai)), i), it follows
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that π(choice(ord i , γ(ai)),m) ⊆ pi holds. If process Pi is crashed, it does not perform

any write operation on register VECj. Therefore, program variable Ai eventually

records the processes indices described in the lemma below.

Lemma 7.3.32. Let Pm and Pi be non-crashed processes. For every computation

sequence of program S, the following property eventually holds:

2((2HP i(m) ∧2¬InCSm ∧ loci /∈ [`8.5, `8.7] ∧ pi = π(choice(ord i , γ(ai)),m))

→ 32(loci /∈ [`8.5, `8.7] → Ai ⊇ {j | CrashedInCSj ∧ j ∈ pi}
∪ ⋃

i′∈pi

Ei(i
′) \ {i})) .

From the above lemma and Lemma 7.3.12(b), it immediately follows that the

value of variable Am eventually remains unchanged.

Corollary 7.3.3. Let Pm be a non-crashed process. For every computation sequence

of program S, the following property eventually holds:

2((2HPm(m) ∧2¬InCSm)

→ 32(locm /∈ [`8.5, `8.7] → Am = {j | CrashedInCSj ∧ j ∈ pm}
∪ ⋃

i′∈pm

Em(i′) \ {m})) .

Since every non-crashed process Pi eventually identifies process Pm as the highest

priority non-crashed process, by Lemma 7.3.32 and Corollary 7.3.3, variable Ai records

the values of Am, provided Pm is distinct from Pi.

Lemma 7.3.33. Let Pm and Pi be distinct non-crashed processes. For every compu-

tation sequence of program S, the following property eventually holds:

2((2HP i(m) ∧2¬InCSm)

→ 32((loci /∈ [`8.5, `8.7] ∧ locm /∈ [`8.5, `8.7]) → Am ⊆ Ai)) .

Because of the above lemma, if at least ` processes are recorded in set Am of

the always highest priority non-crashed process Pm, and Pm never enters its critical
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section, then eventually every distinct non-crashed process Pi sets its register TRYi

to false.

Lemma 7.3.34. Let Pm and Pi be distinct non-crashed processes. For all computation

sequences of program S, the following property holds:

2((2HP i(m) ∧2¬InCSm ∧ locm /∈ [`8.5, `8.7] ∧ |Am| ≥ `)

→ 3(TRYi = false W |Am | < `)) .

Assume there are less than ` processes crashed in the critical section and Pm

remains the highest priority non-crashed process. If |Am| ≥ `, because of Lemmata

7.3.33 and 7.3.34, eventually all non-crashed processes distinct from Pm set their

registers TRYi to false. Consequently, only less than ` processes crashed in the critical

section record true in their registers TRYj. Hence, eventually |Am| < ` holds unless

Pm enters its critical section.

Lemma 7.3.35. Let Pm be a non-crashed process. For every computation sequence

of program S, the following property eventually holds:

2((|{j | CrashedInCSj}| < ` ∧2HPm(m)) → 3(|Am| < `W InCSm)) .

Because of the above lemma, register TRYm eventually records true unless process

Pm enters its critical section.

Corollary 7.3.4. Let Pm be a non-crashed process. For every computation sequence

of program S, the following property eventually holds:

2((|{j | CrashedInCSj}| < `∧2HPm(m)) → 3(TRYm = trueW InCSm)) .

Assume there are less than ` processes crashed in the critical section and Pm

remains the highest priority non-crashed process. Then by the above corollary, even-

tually TRYm remains true. By Lemma 7.3.12(a), if Pm is at location `18, Bm = Em(m)

holds. Because the value of TRYm remains unchanged, the value of VECm remains
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unchanged as well. Hence, by Lemma 7.3.16, the value of Em(m) remains unchanged.

By Lemma 7.3.31, for every non-crashed process Pi, eventually Ei(m) = Em(m) holds.

Since Pm is the highest priority non-crashed process, because of Lemma 7.3.32, even-

tually Ai ⊇ Ei(m) holds for every non-crashed process Pi distinct from Pm.

Assume that |Bm| > ` remains to hold. Then eventually |Ai| > ` and TRYi = false

always hold for every non-crashed process Pi distinct from Pm. Because there are less

than ` processes crashed in the critical section, i.e., with TRYj = true, eventually

there are at most ` processes in Em(m), which is a contradiction with the assumption

that |Bm| > `.

Lemma 7.3.36. Let Pm be a non-crashed process. For all computation sequences of

program S, the following property eventually holds:

2((|{j | CrashedInCSj}| < ` ∧2HPm(m)) → 3(|Bm| ≤ `W InCSm)) .

The next theorem is a direct consequence of Lemmata 7.3.29 and 7.3.36. Every

non-crashed process eventually enters its critical section, provided that less than `

processes are crashed in the critical section.

Theorem 7.2. Let Pi be a process. For all computation sequences of program S, the

following property holds:

(|{j | CrashedInCSj}| < ` ∧ ¬crashedi) → 23InCSi .



87

CHAPTER 8

CONCLUSION

We have developed an assertional correctness proof of a complicated SLEX algo-

rithm. That algorithm is a slight improvement of the SLEX algorithm in (Abraham,

Dolev, Herman, and Koll 2001). Both these algorithms utilize single-writer multiple-

reader regular registers. They are also able to cope with a limited number of crashed

processes. Both the algorithms satisfy the safety property that if at most ` processes

are crashed in the critical section, from some point onwards at most ` processes are

simultaneously be in their critical sections. The SLEX algorithm described in the cur-

rent paper satisfies a stronger liveness property than the SLEX in (Abraham, Dolev,

Herman, and Koll 2001). That liveness property is that every non-crashed process

eventually enters its critical section, provided that less than ` processes are crashed

in the critical section. The SLEX algorithm in (Abraham, Dolev, Herman, and Koll

2001) satisfies the liveness property that every non-crashed process eventually enters

its critical section only if less than ` processes are crashed outside the remainder

section.

Our constructive proof has been carried out in Linear–Time Temporal Logic and

utilized a history to model access to regular registers. Our analysis has provided some

new insight in the correctness of the algorithm. That insight has allowed us to identify

some possible improvements of the SLEX algorithm in (Abraham, Dolev, Herman,

and Koll 2001). We have also explicitly formulated auxiliary quantities required
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to establish the program’s properties. We have characterized processes (and their

minimum number) identified by some process as attempting to enter their critical

sections. We have also developed a proof rule for deriving eventuality properties of

programs in the presence of disabled processes. We have used that proof rule to

structure our correctness proof of the liveness property.

In the future, we will continue in the mechanical verification of our proof. This

mechanization has been started using the PVS theorem prover (Owre, Shankar,

Rushby, and Stringer-Calvert 2001a; Owre, Shankar, Rushby, and Stringer-Calvert

2001b; Owre, Shankar, Rushby, and Stringer-Calvert 2001c).
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APPENDIX A

UNITY PROGRAM

In this appendix, we give a UNITY representation of the SLEX program executed

by process Pi, for i = 1, 2, . . . , N .

loc = `1 −→ loc := `2

loc = `2 −→ invoke write(Xi, true); loc := `2 .1

loc = `2.1 −→ respond write(Xi); loc := `3

loc = `3 −→ j := 1; loc := `4

loc = `4 −→ invoke read(VECj); loc := `4.1

loc = `4.1 −→ respond read(v[j], VECj); loc := `5

loc = `5 ∧ j < N −→ j := j + 1; loc := `4

loc = `5 ∧ j = N −→ loc := `6

loc = `6 −→ vec := report(v , i); loc := `7

loc = `7 −→ invoke read(TRYi); loc := `7.1

loc = `7.1 −→ respond read(old try, TRYi); loc := `8

loc = `8 −→ loc := `8.1

loc = `8.1 −→ j := 1; loc := `8.2

loc = `8.2 −→ invoke read(TRYj); loc := `8.2.1

loc = `8.2.1 −→ respond read(t[j], TRYj); loc := `8.3

loc = `8.3 −→ invoke read(Xj); loc := `8.3.1

loc = `8.3.1 −→ respond read(x[j], Xj); loc := `8.4
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loc = `8.4 −→ a[j] := x[j] ∨ t[j]; loc := `8.5

loc = `8.5 ∧ a[j] −→ loc := `8.6

loc = `8.5 ∧ ¬a[j] −→ loc := `8.7

loc = `8.6 −→ invoke read(ORDj); loc := `8.6.1

loc = `8.6.1 −→ respond read(ord , ORDj) : loc := `8.7

loc = `8.7 ∧ j < N −→ j := j + 1; loc := `8.2

loc = `8.7 ∧ j = N −→ loc := `8.8

loc = `8.8 −→ p := π(choice(ord , γ(a)), i); loc := `8 .9

loc = `8.9 −→ A := {j | j 6= i ∧ t[j] ∧ (j ∈ p ∨
∃i′ · (i′ ∈ p ∧ ¬dominates(v , j , i ′)))};

loc := `8.10

loc = `8.10 −→ try := |A| < `; loc := `9

loc = `9 −→ invoke write(TRYi, try); loc := `9.1

loc = `9.1 −→ respond write(TRYi); loc := `10

loc = `10 ∧ try ∧ ¬old try −→ loc := `11

loc = `10 ∧ (¬try ∨ old try) −→ loc := `12

loc = `11 −→ invoke write(VECi, vec); loc := `11.1

loc = `11.1 −→ respond write(VECi); loc := `12

loc = `12 ∧ ¬try −→ loc := `1

loc = `12 ∧ try −→ loc := `13

loc = `13 −→ j := 1; loc := `14

loc = `14 −→ invoke read(VECj); loc := `14.1

loc = `14.1 −→ respond read(v[j], VECj); loc := `15

loc = `15 −→ invoke read(TRYj); loc := `15.1

loc = `15.1 −→ respond read(t[j], TRYj); loc := `16

loc = `16 ∧ j < N −→ j := j + 1; loc := `14

loc = `16 ∧ j = N −→ loc := `17
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loc = `17 −→ B := {j | t[j] ∧ ¬dominates(v , j , i)};
loc := `18

loc = `18 ∧ |B| > ` −→ loc := `1

loc = `18 ∧ |B| ≤ ` −→ loc := `19

loc = `19 −→ Critical Section; loc := `20

loc = `20 −→ invoke write(TRYi, false); loc := `20 .1

loc = `20.1 −→ respond write(TRYi); loc := `21

loc = `21 −→ invoke write(Xi, false); loc := `21 .1

loc = `21.1 −→ respond write(Xi); loc := `22

loc = `22 −→ row := change(ord , γ(a), i); loc := `23

loc = `23 −→ invoke write(ORDi, row ); loc := `23.1

loc = `23.1 −→ respond write(ORDi); loc := `24

loc = `24 −→ Remainder Section; loc := `1
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A formal correctness proof of a self-stabilizing `-exclusion algorithm (SLEX) is

presented. The analyzed algorithm is an improvement of the SLEX due to Abraham,

Dolev, Herman, and Koll, since our version satisfies a stronger liveness property. The

proof is formulated in Linear–Time Temporal Logic and utilizes a history to model

access to regular registers. The proof consists of a safety part and a liveness part.

Our analysis provides some new insight in the correctness of the algorithm:

1. Our proof is constructive. That is, we explicitly formulate auxiliary quantities

required to establish some of the properties. This contrasts with the opera-

tional arguments of Abraham et al., where many quantities are not explicitly

formulated and the validity of the above mentioned properties is established by

disproving their non-existence.

2. We characterize processes (and their minimum number) identified by some pro-

cess as attempting to enter their critical sections.

3. A novel proof rule for reasoning about programs in the presence of disabled

processes is presented to structure the liveness proof.
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